

Smart Simulation of Low Constant Pressure Molding Using Virtual Sensors

Alex Baker

Sr. Applications Engineer Moldex3D N.A.

Low Pressure Molding Strategies

- > Traditional Injection Molding has several challenges
 - High pressure / clamp tonnage
 - Abrupt & sensitive transition between Fill & Pack
 - Too many independent variables to adjust
 - REQUIRES MANUAL TWEAKING OF THE PROCESS ON THE FLOOR
- > Sensor feedback strategies
 - iMFLUX
 - Uses a low constant pressure filling with a sensor feedback to pack the material as it flows
 - De-coupled III
 - Modulates the flow rate late in the filling based on cavity sensor information to allow packing to apply earlier in the process

IMFLUX

What is iMFLUX?

Low Constant Pressure

How does iMFLUX Process work?

- PFA is a pressure change factor that can be used to increase or decrease the melt pressure in response to cavity pressure values.
- PFA is a multiplier of cavity pressure that creates a melt pressure change

Key parameters for iMFLUX simulation setup

> Need to know the lowest pressure required to get a full shot

- > iMFLUX variables:
 - Minimum filling pressure (target pressure)
 - Virtual sensor location
 - PFA value
 - Initial flow rate
 - Approximate machine time constant

iMFLUX vs Conventional Velocity

Moldex3D

iMFLUX Benefits (Actual)

- 41% Reduction in Melt Pressure
- 46% Reduction in Cavity Pressure
- 3% Weight Reduction
- 8.75% Cycle Time Reduction
- 50% Increase in Cavitation (32 to 48 Tonnage @ 750)
- 35% Tonnage Reduction (750 to 500 Cavitation @ 32)

De-coupled III

What is Decoupled III (RJG)

- Fill to 80-90% of the parts
- Pack to a set cavity pressure
- Use hold time to maintain needed pressure in mold until gate seal (if needed)

Important Parameters to be Determined for Decoupled III

- 1) When should the flow rate be dropped?
- 2) How much should the flow rate be dropped by?
- 3) Where is the sensor located in the geometry to specify switch to constant pressure stage?
- What pressure should be used to determine when the switchover occurs?

> Geometry

Model Details	
Mesh Type	Solid
Solid Mesh Element Co	2,194,968
Part	406,654
Hot Runner	23,296
Moldbase	1,504,538
Cooling Channel	260,480
Surface Mesh Element	60,836
Part	60,836
Dimension	mm
Part	276.80x233.33x108.00
Mold	1068.10x1068.10x1068.10
Projection Area	cm ²
In Parting Direction (X)	166.125
Volume	cc
Part	257.36
Hot Runner	205.78

Hot Runner

Result

Check log file, VP is after 100% filled

> Sprue Pressure comparison with regular IM

Clamp Tonnage comparison with regular IM

Moldex3D

Volumetric Shrinkage

Decoupled III gives a higher but more "even" shrinkage

> Warpage

Regular IM Max: 1.715mm Min: 0.493 mm Decoupled III Max: 1.702mm Min: 0.515 mm

Conclusion

- iMFLUX is a coupled approach that utilizes constant pressure and cavity sensor feedback to allow smoother filling
- De-coupled III used a flow rate modulation approach based on cavity sensor feedback to allow a smoother filling
- > Both approaches can help to:
 - Even out cavity pressure
 - Smoothen the transition from fill to pack
 - Increase dimensional stability

Moldex3D