NFPP Lattices to Enhance Formability of Cellulose Nonwovens

Meghana Kamble

SPE TPO 2025

Detroit, MI

Sept 30 – Oct 3, 2025

VOLKSWAGEN GROUP OF AMERICA

Outline

- Background
- Project Objectives
- Lab Scale Forming Trials
- Forming and Validation of Full-Scale Demonstrator
- Summary of Results

Why Paper as Composite Reinforcement?

Material emissions to account for 60% of total vehicle life cycle emissions by 2040*

Most industrial natural fibers stem from dedicated plants – grown only in specific regions → high logistics footprint

Large-Scale Recycled Feedstock

- Approx. 40% of all solid waste is paper and cardboard (46 million tons in USA, 2018**)
- Existing supply chains all over the world

Additional Benefits over Other Natural Fibers

- Improved quality control
- Not competing with food crops
- Variety of aesthetics available (natural, bleached, dyed, etc.

Image source: RecyclingInside

*World Economic Forum - Paving the Way: EU Policy Action for Automotive Circularity

**www.epa.gov

Paper Composites - Benefits and Limitations

Conventional manufacturing technology and equipment

Benefits

- Established molding equipment
- Robust supply chains

Limitations

- · Short fiber lengths
- Low melt shear strength
- Low gsm / sheet

Hybrid paper composite sheets

Back injection molded interior panels

Opportunities

- Parts can be back injection molded
- Natural fiber composites are fully recyclable
- Can combine recycled pulp and recycled plastic
- Lattices can improve molding of complex geometries from flat sheets

Paper composites are a cost-efficient alternative to nonwoven NFPP

www.weav3d.com

Why WEAV3D Composite Lattice?

TUNEABLE

- Locally optimized lattice density
- UD tapes control strain during forming and increase melt strength

COST-EFFECTIVE

- Automated continuous process
- Co-formable with paper composite in single step

COMPATIBLE

- Sheet or roll format
- NFPP tape option available for monomaterial solution

Strategic use of UD tapes in lattice provides a cost-effective and adaptable solution

Project Objectives

Full Scale Part Forming Goals

- 1. Eliminate thru-thickness tearing of paper composite in deep draw/complex parts
- 2. Identify tool and process changes needed to convert from nonwoven NFPP to paper composite

Experimental Goals

Presented at:

1. Characterize effect of lattice on flexural properties vs. baseline

2. Characterize water uptake of lattice reinforced panels vs. baseline

Lab Scale Forming

Experimental Approach

- 1. WEAV3D has a 25-ton thermocompression workcell, with contact oven and manual shuttle
- 2. Complex geometry tool (~6"x6"x2" cavity) with:
 - 1. 2" vertical draw corner
 - 2. Double curvature/bullet nose
 - 3. $\frac{1}{2}$ " step down on 3-sides
- 3. Control panels (no lattice) molded to establish tearing behavior and layer count limits of tool
- 4. GFPP and NFPP lattice reinforced panels molded with varying lattice spacing and lattice positioning to understand locality effects of tape position

Complex Forming - GFPP 50-50

Complex Forming - NFPP 50-50

Complex Forming -NFPP 25-25

Full-Scale Demonstrator

Mock-up of Full-Scale

Demonstrator Part, 2:1 Scale

Lattice as Manufactured

WEAV3D

Experimental Approach

- Molding trials conducted at Tier 1 facility in Spain
- 2. 16 pieces were produced:
 - 1. 3 control parts
 - 2. 10 NFPP lattice-reinforced parts
 - 3. 3 GFPP lattice-reinforced parts

Forming Process

PAPER COMPOSITE
PART

Comparison Against Control

Control – 11 Layers

NFPP Lattice - 10+2 Layers

GFPP Lattice – 10+2 Layers

Comparison Against Control

Control

NFPP Lattice Outer

NFPP Lattice Under

GFPP Lattice Under

www.weav3d.com

Summary of Results

- Lattice reinforcements successfully eliminated thru-tearing in paper composite
- Lack of compressibility of paper composite requires tooling changes to accommodate wrinkle thickness along tool edge

Sponsored by:

Manufacturing Innovation

In Partnership with:

WEAW3D®

VOLKSWAGEN GROUP OF AMERICA

WEAV3D Lattice Enables Increased Draw Depth of Low Melt Strength Materials

