Polymer Engineering Center

University of Wisconsin - Madison

7

Processing Behavior of Recycled Thermoplastics: Process-Induced Changes in Microstructure

Paula Hohoff Dr. John E. Estela-García Prof. Tim A Osswald

UW - Madison

July 29, 2025

The Challenge of Plastics Waste

Data Source: Geyer, R., et. al. 2017. Production, use, and fate of all plastics ever made. DOI: 10.1126/sciadv.1700782

✓ Prevalence

Plastic's versatility and widespread usage have led to its prevalence in various industries and everyday life.

⊘ Advantages

- Inexpensive
- Widely available
- Good mechanical properties
- Strong chemical resistance

Future Projections

Plastic use is expected to increase by approximately 90% through 2060, raising concerns about environmental impact.

U.S. Plastics Waste Disposal

Low Recycling Rates

Despite demand for recyclable materials, plastic recycling rates remain low.

9% of plastic waste recycled in the U.S.

ii Landfill Destination

The vast majority of plastics in the U.S. end up in landfills.

75% of plastic waste goes to landfills

Data Source: OECD, NREL

Economics of Landfilled Plastics Waste

Tandfilled Plastic Value

Estimated market value of landfilled plastic material:

\$7.2 Billion

How can we enable more recycling?

(Recycled) Long Fiber-Reinforced Thermoplastics (LFT)

Fi

Fiber Microstructure of LFT

!

Understand interdependencies in fiber microstructure!

Process-Induced Changes of Polypropylene (PP)

1

Understand material changes induced during processing!

My PhD Research Summary

Context

Action

Fiber length

So What?

Mathematical Models

Results

$$\frac{d\varepsilon}{dt} = k\dot{\gamma} \left(\frac{\tau}{\sigma_c}\right)^n e^{-k\dot{\gamma}t \left(\frac{\tau}{\sigma_c}\right)^n}$$

$$\frac{dL}{dt} = k_f (L - L_{\infty})$$

How does Polymer **Processing** impact...

Test + Analyze + Model

- Viscosity
- Flow dynamics
- Heat transfer

$$\frac{d\varepsilon}{dt} = k\dot{\gamma} \left(\frac{\tau}{\sigma_c}\right)^n e^{-k\dot{\gamma}t \left(\frac{\tau}{\sigma_c}\right)^n}$$

$$\frac{dL}{dt} = k_f (L - L_{\infty})$$

Processing Insights

Improve and Predict Properties of:

Material

Product

Flow Study of Recycled Polypropylene

Thermal Properties

Non-isothermal DSC thermograms showing heating (top) and cooling (bottom) cycles at 10 K/min for virgin PP and EX3 and EX6.

Estela-García, Hohoff, Osswald (2025)

1

Consistent melting but variations in crystallization exotherms during cooling

Viscosity

Evolution of PP viscosity profiles at 210°C

Estela-García, Hohoff, Osswald (2025)

Decrease in viscosity driven by temperature during processing

Crystallization

Simulated crystallization conversion profiles (200°C to 40°C in 40s)

Estela-García, Hohoff, Osswald (2025)

Ī

Recycled material shows 3 sec delay in crystallization onset

Flow Study of Recycled Polypropylene

Material Testing

Material Cards
Moldex3D

Flow Analysis

Thermal Properties

Viscosity

4 Different Conditions

1 - 6 Extrusions

?

How does the mechanical recycling impact the flow behavior?

Maximum Shear Stress during Injection Molding

Injection molding simulation results for maximum shear stress

Estela-García, Hohoff, Osswald (2025)

Decrease in high-stress regions with increased re-extrusion

0.050

Velocity (in flow direction) during Injection Molding

Higher flow velocities

[m/sec]

Increased alignment of polymer chains

Increased yield stress

Estela-García, Hohoff, Osswald (2025)

Increased thermal degradation leads to higher flow velocities

extrusion conditions

Observations & Future Work

Connect knowledge of process-induced changes in fiber and matrix microstructure

Predict changes in flow of recycled materials

Optimize processing conditions

Acknowledgments

7 Polymer Engineering Center

University of Wisconsin - Madison 1513 University Avenue | Madison, Wisconsin 53706

pec.engr.wisc.edu

Paula Hohoff

hohoff@wisc.edu

Professor Tim Osswald (608) 263-9538 | tosswald@wisc.edu

