SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

NEW DEVELOPEMNTS IN CO-ROTATING TWIN-SCREW EXTRUSION ELEMENTS FOR HIGH WEAR APPLICATIONS
Tom Kvinge, May 2012

Co-rotating twin screw extruders are the industry standard for processing filled resins. Rapid wear to high pressure sections in the extruder lowers product quality and increases downtime to change worn elements. More wear resistant element materials have been developed to lengthen the time between machine teardown requirements. A new HVOF method offers up to four times more wear resistance than standard options. This paper compares this new HVOF method of tungsten carbide protection with standard wear resistant options

POLYBUTYLENE WATER SERVICE PIPE: THE OTHER SIDE OF THE STORY
Donald E. Duvall, Dale B. Edwards, May 2012

Polybutylene pipe was once widely used in potable water distribution systems. However, problems occurred with the pipe's performance. It was claimed that the root cause of PB water pipe failures was in-service oxidative degradation of the material. These allegations ignored major problems with the installation of the PB water lines. This paper will show that installation issues far outweighed PB oxidation as the root cause of failure of PB water service lines.

PRODUCING NANO AND MICRO FIBERS BY USING JETS OF GAS
Rafael E. Benavides, Sadhan C. Jana , Darrell Reneker, May 2012

In this work, a new process -Gas Jet Fibers (GJF)- that uses a high speed jet of gas to produce nanofibers from a nozzle is presented. In operation, a continuous layer of fiber precursor is fed on a flat surface, whereby the material is stretched and fibers are launched by the action of the high speed air flow field of the jet. Fiber morphology, diameter, and length can be easily controlled by varying the jet conditions, nozzle geometry, and fiber precursor physical properties.

PREDICTING CAPILLARY DIE SWELL OF HIGH MOLECULAR WEIGHT HDPE RESINS FOR BLOW MOLDING APPLICATIONS
Tieqi Li, Carmine D’Agostino, Wen Lin, Tracy Li, May 2012

Capillary die swell of high molecular weight HDPE resins was measured and compared to the prediction based on various rheological models. The predictions based on stress ratio per Leonov model tend to overestimate the capillary die swell while those through Wagner model underestimate. Predictions per Doi- Edwards model were applicable only at low shear rate. This study reveals the need to further assess damping parameters in addition to the relaxation spectrum.

DEGRADATION MECHANISM OF GFRP AT HOT WATER
Shun Sato, Tatsuro Morita, Yoshimichi Fujii, Hiroyuki Nishimura, May 2012

This study was conducted to understand the degradation mechanisms of GFRP at hot water. Surface and cross section of immersed in hot water samples were observed in detail, and weight change rate and bending strength were researched. The samples were also conducted ultrasonic wave inspection to understand degradation nondestructively. Then, the ultrasonic echo parameter V value was used, and it was understood that V value could show generation or growth of debondings or delaminations.

IMPROVED SCRATCH AND CHEMICAL RESISTANCE ACRYLIC FOR AUTOMOTIVE MOLD-IN-COLOR APPLICATIONS
H. Reid Banyay, May 2012

This paper explores the performance of a grade of Mold-In-Color PMMA used for automotive applications. The focus is improvement vs. traditional PMMA and coating technologies during various scratch and mar abrasion evaluations. Information on solvent stress craze resistance is also reviewed. Various scratch and mar evaluation methods used during this investigation are compared.

ENTREPRENUERSHIP, INNOVATION, AND MANAGEMENT
Stephen O. Bozzone, Bonnie J. Bachman, May 2012

Innovation is one of the most misused and poorly defined terms when discussing economic growth and development. It’s a buzzword used by politicians with hopes that by just saying it will somehow magically break free us from the mire of the current global economic downturn. There’s no mystery to innovation and at the surface it is rather simple. Innovation simply stated is people implementing ideas to create value. It is easy to understand yet vastly more challenging to do well.

THE DESIGN OF A PROTOTYPE VACUUM THERMOFORMING MACHINE
Stefan A. Wilson, Soren E. Maloney, Nigel L. Williams, May 2012

A prototype of a vacuum thermoforming machine was designed and built at the Metal Industries Company Limited and was commissioned in December 2009. The need for the capability of plastics thermoforming at the Metal Industries Company Limited is described together with the basis for the thermoforming machine design.

2 UM FIBER LASERS FOR WELDING OF OPTICALLY CLEAR POLYMERS
Tony Hoult, May 2012

ANTEC 2012 Technical Paper - The applications of lasers for welding polymers in industry are slowly increasing but the main problem to date is that joints may only be welded by the transmission welding technique and this significantly reduces design flexibility.

IMPROVING QUALITY AND REDUCING COSTS BY STATE-OF-THE-ART COLOR AND APPEARANCE SUPPLY CHAIN MANAGEMENT
Walter Franz, Scott Brewer, May 2012

As consumers in mature and growing geographical markets become more sophisticated and discriminating, the color and appearance of products such as home appliances, consumer electronics, or vehicle interiors has become a dominant criterion in consumers’ buying decisions. This fundamental trend requires that not only functional design, but that color, appearance, and finish differentiate successful products’ brand identities and quality from their competitors.

HYDROCARBON FUEL OBTAIN FROM MUNICIPAL WASTE PLASTICS USING STAINLESS STEEL REACTOR
Moinuddin Sarker, Mohammad Mamunor Rashid, Sadikur Rahman, May 2012

Waste plastics usages are increasing all over the world every day. People are consuming plastics in their daily life for all necessary purposes. After they are used all plastic become garbage and its goes to land fill or incineration facilities. It’s creating environmental problem. Waste plastic can be transform into alternate or renewable energy for electricity or feedstock refinery. The thermal degradation process applied with mixture waste plastics of high density polyethylene (HDPE-2), low density polyethylene (LDPE-4), Polypropylene (PP-5) and Polystyrene (PS-6) using stainless steel reactor has been successful in converting into liquid fuel. The polymer has been selected for the experiment 100% HDPE, LDPE, PP and PS by weight. The temperature used for degradation ranges from 150-400 °C and the experiment takes about was 5 -6 hours. The obtain products are liquid fuel, light gas and black carbon residue. Various techniques such as, (Gas Chromatography and Mass Spectrometer, FT-IR and DSC) are used for obtain the analysis of the fuel purposed. GC/MS result indicates hydrocarbon compound in the produced fuel ranges from C3-C28 and also present C1-C4 light gases. Also further fractional distillation process was used to obtain different 5 (Gasoline, Naphtha, Aviation, Diesel and Fuel Oil) category liquid fuel by using different temperature profiles. All of the fraction fuels have different carbon range and contain long chain hydrocarbon like alkane and alkene and some aromatic compound.

THE EFFECT OF POLYBUTYLENE ON SEAL STRENGTH OF EVA/POLYBUTYLENE SEAL BLENDS IN MEDICAL DEVICE PACKAGING
Melissa Diskin, Theresa Hermel-Davidock, May 2012

Packaging seals must be both easily opened and strong enough to maintain integrity. To tailor the strength of Ethylene Vinyl Acetate (EVA) seal layers, Polybutylene (PB-1) is often added. This study examines the effects of seal layer composition, gauge, and sealing temperature on seal strength. A composition and structure/property map for EVA/PB-1 sealant layers was developed. This work helps provide an understanding of material origins of seal strength, so that strength may be easily tailored.

SIMULTANEOUS MILLING, COATING AND COAT-CURING OF PARTICULATES IN A FLUID ENERGY MILL VIA PHOTO-POLYMERIZATION
Huiji Liu, Chunmeng Lu, SubHASH h. Patel, Linjie Zhu, Ming-Wan Young, Costas G. Gogos, Peter C. Bonnett, May 2012

In conjunction with UV technology, a fluid energy mill (FEM) was demonstrated to simultaneously and in-situ achieve several functions, namely: size reduction of pre-coated coarse micron-sized particles with UV-curable chemicals into smaller (ca. 1~10?m) particles, coating of UV chemicals onto the milled particles, and curing of the UV chemicals. IR analysis showed that the double bond conversion was up to 71% and 93% using air and nitrogen as motive gas, respectively.

STRUCTURE AND PROPERTIES OF POLYPROPYLENE/MICRONIZED RUBBER POWDER COMPOSITES
Ravi Ayyer, Tom Rosenmayer, William Schreiber, Jonathan Colton, May 2012

This investigation focuses on understanding the effects of particle size and surface area of cryogenically- ground micronized rubber powders (MRP) on the properties of MRP/polypropylene (PP) composites. Comparisons are made with ambient-ground rubber powders and its PP composites. The morphology of the fracture surfaces of the composites is studied in relation to the effects of particle size on mechanical properties. In addition, this paper discusses utilizing a compatibilizer with MRP in improving the mechanical performance of the PP composites for its use in various market segments, such as automotive, consumer and, construction.

PROCESSING-STRUCTURE-PROPERTY RELATIONSHIPS IN SOLID-STATE SHEAR PULVERIZATION: PARAMETRIC STUDY WITH NEAT POLYPROPYLENE
Katsuyuki Wakabayashi, Joshua T. Clark, Philip J. Brunner , John M. Torkelson, May 2012

Solid-state shear pulverization is a unique, emerging processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer composites. The instrumentation is a modified twin-screw extruder, where the barrels are continuously cooled below the transition temperatures of polymers. Using a model system of neat polypropylene, the effects of various processing parameters, such as barrel dimensions and temperature, screw design, and material feed rate, are correlated to output morphology, structure and properties.

GENERATION OF AN EMPIRICAL MODEL TO DESCRIBE THE EXPERIMENTAL EVOLUTION OF DRAG RATIO FOR A TWO PHASE HORIZONTAL PIPE FLOW OF NON-NEWTONIAN LIQUID (CARBOPOL)/AIR MIXTURE
Febin Cyriac, , J.M.Franco, M. Carmen Sánchez, May 2012

The prediction of the pressure drop gradient and the evaluation of the drag reduction phenomenon observed during the piping multiphase flow of a Carbopol/Air mixture have been investigated. Viscous flow tests in rotational rheometers and pressure drop measurements in pipe lines have been carried out with both smooth and rough surfaces. The Power law model is used to predict the pressure drop gradient. The pressure drop gradient in the intermittent multiphase flow regimes can be predicted by modifying the classical approach of Lockhart and Martinelli with an empirical correction factor. An Empirical model with quadratic equation has been proposed to describe the experimental evolution of drag ratio as a function of Re'L / Re'TP.

CHARACTERIZATION OF MICRONIZED RUBBER POWDERS WITH COST EFFECTIVE PERFORMANCE BENEFITS IN RUBBER COMPOUNDS
Ravi Ayyer, Tom Rosenmayer, Frank Papp, May 2012

Micronized Rubber Powder (MRP) is classified as dry, powdered elastomer in which a significant proportion of particles are less than 100 microns. It is used as a compound extender to offset the spiraling prices of natural and synthetic virgin rubber materials. MRP is typically made from cured elastomer feedstock via a cryogenic process at a temperature below the Tg of the polymer. A better understanding of MRP surface properties is needed to facilitate efforts to utilize the material as a high value, sustainable material for use in various industrial and consumer rubber products. An update on MRP characterization is presented, including surface morphology by SEM, surface chemistry by XPS, surface area by Kr BET, and particle size distribution by laser diffraction. An example is given that demonstrates how the surface chemistry can be used to explain the effect of MRP on cure and physical properties in rubber compounds.

MULTIFUNCTIONAL COMPOUNDS USING CARBON NANOSTRUCTURE ENHANCED GLASS REINFORCEMENTS IN ELECTROMAGNETIC COMPATIBILITY APPLICATIONS
Desmond J. VanHouten, Will iam E. Smith, Stephanie A. Rinne, David R. Hartman, May 2012

A new class of thermoplastic reinforcements was recently developed using technology whereby carbon nanostructures (CNS) are grown on the surface of glass fibers. This hybrid reinforcement results in specialized, multifunctional thermoplastic compounds that exhibit 60 dB of electromagnetic interference (EMI) shielding. This paper will discuss the recent research that has been conducted in incorporating the carbon nanostructure/glass fiber hybrid into polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) and polyamide-6,6 (PA-6,6) and give a highlight of the material properties of the resulting compounds.

AN OVERVIEW OF SIZING CHEMISTRY AND ITS IMPORTANCE IN COMPOSITE PROCESSING AND PROPERTIES
Andrew E. Brink, Yves De Smet, May 2012

Sizing is applied to carbon and glass fiber during manufacturing to protect the fiber during and after production, impart processability, enable composite fabrication and provide interfacial adhesion between the fiber and matrix resin. If the sizing’s only function was to improve processability then it would be possible for one sizing to “fit all”, however interfacial adhesion is critical and for every matrix resin a different sizing chemistry is required. This presentation will provide an overview of sizing chemistries available and examples of their impact on processing and mechanical properties.

COMPARISON OF MASS TRANSIT MATERIAL FLAMMABILITY REQUIREMENTS AND TRENDS FOR AIRCRAFT AND TRAIN APPLICATIONS IN EUROPE AND NORTH AMERICA
Ralph Buoniconti, Torben Kempers, Steven MacLean, May 2012

Establishing meaningful and reliable flame, smoke and toxicity (FST) requirements for aircraft and train components made from engineering thermoplastics is an ever-evolving task for the mass transit authorities throughout the globe. This paper attempts to clarify the current state of the US and EU regulations, the associated test methods and typical FST performance of the polymeric materials used today in the mass transit markets. Pending improvements to current FST requirements by the US FAA and the EU EASA regulating bodies, including provisions for heat release and smoke density, are also discussed.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net