SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

REAL-TIME TRACKING OF BIREFRINGENCE, WEIGHT AND THICKNESS DURING DRYING/CURING OF SOLUTION CAST POLYMER COATINGS AND FILMS
Mukerrem Cakmak, Emre Unsal, Jason Drum, Orcun Yucel, Isil Nugay, Baris Yalcin, May 2012

This paper describes the design and performance of a new instrument to follow the drying behavior of polymer solutions and monomers during drying/photocuring. This real-time multisensory instrument follows the in-plane and out-of-plane birefringence, weight, thickness and surface temperature during the course of drying of coatings and films in a controlled atmosphere. It is specifically designed to simulate the behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations that are typically used in manufacturing of functional films including flexible electronics and membranes. Processing variables including air speed and temperature, initial cast thickness, solvent type and solute concentration are controlled to study the effect of each parameter on the real-time drying behavior of polymer solutions and their final properties. The instrument can also be modified to investigate the UV curing of non-solvent systems. Several polymer solution systems were tested and the data will be presented during the presentation

DESIGN AND DEVELOPMENT OF THERMOPLASTIC HAND HOLDS FOR PASSENGER SAFETY IN MASS TRANSPORT SYSTEM
N. Venkatesha, May 2012

Hand holds are the safety devices used in mass transport vehicles to provide support for the standing passengers to hold. The conventional handles are manufactured by metal fabrication process involving lot of secodary operations. The metal handles generally have problems such as poor product consistency, lower productivity, higher cost and weight etc. Engineering thermoplastics is the right choice of material for this application as it offer design flexibility and better aesthetics but the challenge is to ensure long term performance requirements. Designed Innovative thermoplastic handle with finger grip impressions for better comfort. Manufactured using Gas assisted injection molding technology to maintain product consistency, improved productivity, reduced weight and cost. Extensive part testing and validations were done to ensure performance before commercialization. The objective of this paper is to cover in detail the application development process starting from concept to reality meeting all the technical requirements. This successful application development opened up new market space for SABIC Innovative Plastics business and there is huge translation opertunities in Global Mass Transportation market space.

SUBSTITUTING F-PVC WITH THERMOPLASTIC POLYOLEFIN ELASTOMERS
Lisa Madenjian, Jeff Munro, Jeff Liu Madenjian, Jeff Munro, Jeff Liu, May 2012

Flexible polyvinyl chloride has found suitability in a number of injection molded applications over the last several decades. While the material offers a very good balance of properties and processibility, it has come under scrutiny because of its plasticizer content and recyclability, especially in Europe. As such, there are many active programs to replace f-PVC. This paper will review design considerations beyond the datasheet to use when selecting a thermoplastic olefin elastomer to replace f-PVC.

VISCOELASTIC PROPERTIES OF CNT-PC COMPOUNDS: EFFECT OF COMPOUNDING METHOD, CNT-TYPE AND TESTING PROTOCOL
E. Ray Harrell, Joseph C. Golba, Jr, Jill Kunzelman, Jane M. Spikowski, May 2012

Frequency-dependent viscoelastic properties are used to elucidate the relationships among the method of compounding, the types of CNT used within the CNT-PC composite and the changes in structure (CNT-PC interaction) and molecular weight of the base PC. CNT-PC interaction increases increasing CNT content and CNT aspect ratio. Addition of the CNT to a TSE at entry ports after attainment of a PC melt provides higher CNT-PC interaction. Increasing TSE residence time by using multiple passes, significantly decreases the molecular weight of the PC within the CNT-PC composite that is attributed to chain-scission that is intensified by the presence of the CNT-PC interaction.

DETERMINATION OF ENVIRONMENTAL STRESS CRACKING FAILURE MODE IN INVESTIGATIONS OF CPVC FIRE-SUPPRESSION SPRINKLER PIPE FAILURES
Anand R. Shah, Dale B. Edwards, May 2012

This paper discusses three separate failure analysis case studies involving Chlorinated Polyvinylchloride (CPVC) fire suppression sprinkler pipe(s) alleged to have failed due to Environmental Stress Cracking (ESC) from exposure to an incompatible chemical. The investigations highlight the importance of the interpretation of fracture surface morphology, review of background information regarding service history, performing material characterization testing, as well as developing an understanding of the interaction of various chemicals with CPVC material when attributing a failure of CPVC sprinkler pipe to ESC. The case studies discussed are helpful in understanding the ESC mechanism in CPVC sprinkler pipes, which is a complex failure mode. This paper discusses the technical issues that should be addressed in determining whether ESC is the primary cause of failure in a CPVC fire suppression sprinkler pipe system.

TRANSCRYSTALLIZATION OF IN-SITU MICROFIBRILLAR PP/SAN BLEND PARTS MOLDED VIA WATER-ASSISTED INJECTION MOLDING
Bin Wang, Han-Xiong Huang, May 2012

In this work, the crystal morphology of water-assisted injection molded (WAIM) parts of in-situ microfibrillar polypropylene/acrylonitrile–styrene copolymer (PP/SAN) blends with four weight ratios were studied. The results showed that transcrystalline structures formed in the inner layers of the WAIM PP/SAN blend parts at the SAN contents of 4, 6, and 8 wt%, but were absent at an SAN content of 2 wt%. The formation mechanism of the transcrystalline structures was interpreted with the aid of stress and temperature ?elds of the melt within the mold cavity under high-pressure water penetration during the WAIM. It was found that the high shear stress and cooling rate in the inner layer were responsible for the formation of the transcrystalline structures.

EFFECT OF POLYMER VISCOSITY ON POST-DIE EXTRUDATE SHAPE CHANGE IN COEXTRUDED PROFILES
Mahesh Gupta, May 2012

Bi-layer flow in a profile coextrusion die was simulated. Prediction of post-die changes in extrudate profile was included in the simulation. Mesh partitioning technique was used to allow the coextrusion simulation without modifying the finite element mesh in the profile die. Effect of polymer viscosities on the change in profile shape after the polymers leave the die is analyzed. It is found that a difference in the viscosities of the coextruded polymers can lead to a highly non-uniform velocity distribution at die exit. Accordingly, post-die changes in extrudate shape were found to be widely different when the polymers in the two coextruded layers were changed.

INVESTIGATION OF HIGH POWER ULTRASONICS FOR DEPOLYMERIZATION OF POLYLACTIC ACID
David Grewell, Gowrishankar Srinivasan, May 2012

This research work explores the feasibility of ultrasonics to recycle lactic acid by depolymerizing. Post consumer PLA chopped up to 1mm2 was exposed to high power ultrasonics with water or methanol as the suspension media. The treatments were carried out in the presence of organic and ionic salts of alkali metals such a potassium carbonate and zinc chloride as the catalysts. The treatments were replicated by replacing ultrasonics with Hot water bath as the energy source. Analysis with HPLC indicated PLA to Lactic acid conversion was achieved with yields up to 90% utilizing ultrasonics. Energy calculations indicated that Ultrasonics used 30% less energy to achieve the same yield levels as achieve with hot bath technique

BIO- ACRYLONITRILE BUTADIENE STYRENE (BIO-ABS): CREATING A NEW GREEN POLYMER THROUGH MELT BLENDING
Ryan Vadori, Manjusri Misra, Amar Mohant y, May 2012

In this paper, the method for design of a bio-based green material for use in electronics applications is discussed. The aim is substitution of currently used petroleum-based acrylonitrile butadiene styrene (ABS) with a bio-based polymer blend of poly(lactic acid) (PLA) and ABS. In this method, polymers will be melt blended and extruded to test their thermal and mechanical properties. The goal is to achieve performance of the blend equal or better to currently used ABS, as well as be a cost competitive alternative.

ALL GREEN STRUCTURAL COMPOSITES FROM KENAF FIBER AND POLY(FURFURYL ALCOHOL)
Harekrishna Deka, Manjusri Misra, Amar Mohanty, May 2012

The search for natural resource based composites for a spectrum of commercially viable “green products” is drawing a great importance in recent time. In this regard, natural fibers have become an attractive substitute for synthetic glass fibers in polymer composite systems. The natural fibers have advantages such as lower cost, eco- friendly nature, biodegradability, high specific strength, and good mechanical properties as compared to glass fiber. Amongst the biobased matrices, poly(furfuryl alcohol) (PFA), possesses high chemical and heat resistance properties. This makes it suitable for chemical resistance, corrosion resistant and heat stable type applications. As such, an overview of the recent development of PFA based natural fiber composites in terms of their overall properties and their future prospective is evaluated in this work.

IMPROVED UTILIZATION OF CO-PRODUCTS FROM BIOFUEL INDUSTRIES IN NEW MATERIALS USES: A MOVE TOWARDS SUSTAINABLE BIOREFINERY
Amar Mohanty, S. Vivekanandhan, Nima Zarrinbakhsh, Manjusri Misra, May 2012

Ever increasing energy demands, instability and uncertainty of petroleum/fossil fuel sources, and concern over global climate change have led to resurgence in the development of alternative energy that can replace fossil transportation fuel. Biomass conversion into biofuels, results a huge amount of residues or downstream products called as co-products such as distillers’ dried grains with solubles (DDGS), protein meals, crude glycerol, hemicellulose and lignin. As the production of biofuel continues to grow, surplus amounts of co-products become a critical issue and new value addition is needed for their effective utilization. A successful biorefinery begins with the productive usage of all components of biological feedstocks for value-added fuels, chemicals or materials that parallels the traditionall approach used in “petro-refineries”. Still biorefienry is risky investment, with respect to commercial benefits and finding value added uses for their co-products creates economic returns and lead to their sustainability. Thus present articles summaries the prospects of improved utilization of co-products from biofuel industries for new industrial applications.

SYNTHESIS OF CROSS-LINKED, PARTIALLY-NEUTRALIZED POLY(ACRYLIC ACID) BY SUSPENSION POLYMERIZATION IN SUPERCRITICAL CARBON DIOXIDE
Yazan A. Hussaun, Scott J. Smith, Joseph M. DeSimone, Tao Liu, George W. Roberts, May 2012

Particles of cross-linked, partially-neutralized poly(acrylic acid) (PAA) were synthesized in high yield via suspension polymerization of an aqueous solution of acrylic acid and sodium acrylate in supercritical carbon dioxide (scCO2). Siloxane-based surfactants were used to produce particles with an acceptable size range for superabsorbent polymer applications. Several different surfactants were tested and the particle yield was used to compare their performance. The effects of surfactant concentration, degree of neutralization, and agitation rate on the yield and morphology are discussed.

PREDICTING PHASE MORPHOLOGY DEVELOPMENT OF POLYMER BLEND IN CONVERGENT-STRATGHT CHANNEL
Quan-Jie Wang, Han-Xiong Huang, Zhi-Yong Peng, , You-Fa Huang, May 2012

Reduced capillary number theory was used to predict the flow field-induced morphology development of polypropylene/polyamide 6 (PP/PA6) blend with a compatilizer in a convergent-straight channel. Numerical simulation was carried out to predict the flow fields in the channel. The predicted results showed that the dispersed phase featured a droplet structure and a fibrous structure near the center line and wall of the channel, respectively. The predicted results were verified by the experiments. Between the center line and wall, a clear transition of the morphology of dispersed phase was predicted. The predicted transition location was compared to the experimentally-determined result and a good agreement was obtained.

POLYMER NANOCELLULAR FIBERS VIA SUPERCRITICAL CARBON DIOXIDE BASED EXTRUSION FOAMING
Wenyi Huang, Cailiang Zhang, Shuai Zhang, Chenglong Dai, L. James Lee, May 2012

The quest of novel materials for making lighter fibers for textile and non-woven fabrics applications prompts us to exploit the nanocellular fibers. Thermoplastic polyurethane nanocellular fibers were prepared by extrusion foaming using supercritical carbon dioxide as the blowing agent. Nanoparticles such as nanoclay, multi- walled carbon nanotube, and graphene nanosheets were added as the heterogeneous nucleation agents in order to achieve high-efficiency nucleating effects. Surface functionalizations on nanoparticles were conducted in order to ensure the high-degree dispersion of nanoparticle in the polymer. Optimization of processing conditions is necessary for achieving uniform foams with cell size below 1 m in the fiber having a diameter of less than 30 m. The density of nanocellular fiber was reduced by 30- 50% as compared with that of bulk polymer.

SYNTHESIS OF FUNCTIONAL GRAPHENES FOR HIGH-PERFORMANCE NANOPAPERS
Wenyi Huang, L. James Lee, May 2012

Functional graphenes were synthesized from graphene oxide, which was obtained from low-cost graphite via oxidation. In order to prevent the precipitation of graphene during the reduction process, graphene oxide was partially reduced using sodium borohydride and then treated with diazonium salts having –SO3H or –COOH groups, followed by complete reduction with hydrazine. Functional graphenes were prepared in such a way that they could be well dispersed in water, and as a result, nanopapers could be obtained by flow-directed assembly of individual graphene nanosheets via simple filtration. The presence of functional groups in the graphene also allows the formation of covalent bonds between nanosheets by crosslinking with other polymers. The resulting nanopapers have high electrical conductivity with excellent mechanical properties close to those of steel. These functional graphenes are also promising for the applications in water purifications, ultracapacitors, lithium batteries, and electronic materials.

ALKYD RESIN COATING SYNTHESIZED FROM POST-CONSUMER PET BOTTLES FOR WOOD-PLASTIC COMPOSITE
Sawinee Klinrod, Nattakarn Hongsriphan, May 2012

Three formulas of alkyd resins were prepared from phthalic anhydride, glycerol, linseed oil, and ethylene glycol or glycolysis product from post-consumer PET bottles. Linseed oil content of 50 wt% was selected aiming to be suitable for WPC. Surface chemistry was studied by contact angle. Coating properties such as drying time, hardness and adhesion strength were studied. It is found that alkyd resin film from glycolysis-product alkyd resins had better than those of conventional alkyd resins.

DISTRIBUTION OF SPECIFIC ENERGY IN TWIN-SCREW COROTATING EXTRUDERS USING ONE-DIMENSIONAL PROCESS SIMULATION
Adam Dreiblatt, Eduardo Canedo, May 2012

Specific mechanical energy (SME) is a single parameter that represents the energy transfer from the main drive motor through frictional heating for melting, mixing and die pressurization in the compounding process. The calculation of SME is performed using the extruder motor load, screw speed and total throughput to provide energy input on a unit mass basis. Use of one-dimensional computer simulation to analyze the axial distribution of specific energy reveals strategically where this energy is applied in fully-intermeshing, co-rotating twin-screw extruders as a function of screw design.

THE EFFECT OF NANOCLAY ON THE RHEOLOGICAL PROPERTY AND MELT STRENGTH OF POLYPROPYLENE/POLYAMIDE-6 BLEND
Haibin Zhao, Binyi Chen, Yongqiang Lin, Jinwei Chen, Jichang Fan, Xiangfang Peng, May 2012

Polypropylene (PP) and polyamide-6 (PA6) blend and nanocomposite were prepared using melt intercalation technique by blending PP and PA6 by the incorporation of nanoclay. The melt intercalation of PP and PA6 blend was carried out in the presence of a compatibilizer maleic anhydride grafted polyolyaltha olfin. The rheological property, melt strength and the morphology of PP/PA6 blend and PP/PA6/CN nanocomposite were studied. It was found that the incorporation of nanoclay has positive influence on the rheological property and the melt strength of PP/PA6 blend.

SINGLE-STAGE BLOW MOLDING SIMULATION & CONTAINER PERFORMANCE PREDICTION
Sumit Mukherjee, May 2012

For the first time, an analytical computation model has been developed to design and virtually blow preforms on single-stage machines. Due to the complexity of the single stage process, this simulation has been difficult to accurately perform in the past. The model takes into account variables, such as molding temperature and conditioning, to correctly predict the preform profile before blowing. Virtual Prototyping™ software is used to simulate the container blow molding process for round- and oval- shaped containers. The sidewall thickness and mechanical property outputs that are dependent on extent and temperature of stretch are input into finite element analysis software. This enables the computational model to predict container top load and side indentation resistance. A 3L toner bottle case study will show how the computational model was used to evaluate several wide-mouth container preforms for desired thickness distribution and top load performance.

MINERAL REINFORCED IMPACT MODIFIED POLYCARBONATE BLENDS: EXPLORING SPECIFIC FILLER SURFACE INTERACTIONS FOR PROPERTY ENHANCEMENTS
Yuanqing He , Amit Kulkarni, Karin van de Wetering , Vikram Daga, James DeRudder, May 2012

Incorporation of nano to micron scale mineral reinforcements in impact modified polycarbonate blends provides a potential route for achieving high stiffness dimensionally stable blends which are an attractive engineering thermoplastic solution for automotive exteriors and body panels. Designing such blends has traditionally focused on optimizing the flow-impact-stiffness balance. The toughness and impact properties of such reinforced blends are to a large extent dictated by the reinforcing agent characteristics, loading, particle size etc. to name a few. Modifying the surface chemistry of the mineral reinforcements for achieving exceptional toughness and impact properties is the focus of the current paper. The results shall focus on how the interfacial chemistry between the engineering thermoplastic blend and the mineral reinforcement is a key enabler to push the boundaries of flow-impact-stiffness balance in these systems.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net