SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Development of Flaw Criteria for Short-Term Performance of Electro-Fusion Pipe Welds
Donghun No, Avraham Benatar, May 2005

The effects of lack of fusion defects on short term performance of electro-fusion polyethylene gas pipe welds were evaluated when it is subjected to loadings that are experienced by the joint in service. Recently improved ultrasonic non-destructive evaluation techniques were developed for detecting some of these defects. However, it was necessary to develop criteria for determining the size and location of defects that would result in unacceptable short term performance of the weld. We performed a variety of short term tests on joints with pre-designed defects including tensile, crush, and pressure leak tests. In addition, finite element modeling was used to find the stress distribution for joints with and without defects. The experimental results were then used together with modeling work to propose criteria for the size and location of the defects. It was found that for short term performance, defects that are near the outside edge of the socket were most critical.

The Control of Creep Memory in Extruded Polypropelene Tubes
N.M. Rya, H. Ross, M. Martinez-Cobler, G.M. McNally, A.H. Clarke, May 2005

The bend memory of extruded polymer tubes creates major problems during the high-speed automatic assembly of extruded and injection moulded components. This work investigates the effect of water bath quenching conditions, during tube extrusion processing, on the crystalline development, mechanical and creep performance, bend memory and recovery of small bore tubes manufactured from polypropylene (PP). Characterisation of the various tube samples was performed using mechanical (tensile, flexural) and thermal (DSC) analysis techniques. The results indicate that the water bath temperature was a critical processing parameter affecting the bend memory characteristics of these tubing products.

Deformation of PET Nanocomposites
Siddhi Pendse, Nandika D’Souza, Jo Ann Ratto, May 2005

The toughening mechanism in polyethylene terephthalate (PET) nanocomposites is investigated as a function of MLS concentration of 1 and 3% using effective area under the stress-strain curve coupled with infra red (IR) thermal wave imaging techniques. 1% MLS concentration, which had an exfoliated structure exhibited slight enhancement in toughness as compared to neat PET whereas 3% MLS composition showed drop in toughness by 87%. From IR thermography, it was concluded that the toughening mechanism in neat PET is due to the chain mobility induced by thermal heating. On the other hand in 1% MLS concentration, the increase in temperature (plastic deformation) is negligible. Differential scanning calorimetry results indicate the absence of cold crystallization peak. This implies that that the interlamellar disorder is completely removed. In the case of 3% MLS nanocomposite, strain embrittlement is seen. This effect of embrittlement is pronounced at higher rate of testing where ductile-brittle transition is evident in 3% nanocomposite.

Nonlinear Creep of Polyethylene Nanocomposites
Ali Shaito, Nandika Anne D’Souza, Debora Fairbrother, May 2005

A compatibilized linear low density polyethylene (LLDPE) modified by montmorillonite layered silicates (MLS) was analyzed for nonlinear creep. To separate the influence of the compatibilizer and the MLS, separate systems of LLDPE with the compatibilizer, LLDPE with MLS were also investigated. Tensile tests were done on all samples. The samples were then loaded to 50% of their yield stress and creep was conducted for an hour followed by an hour of recovery.The viscoelastic nature of polymers was used to explain creep behavior in PE nanocomposites. Nonlinearity in the creep response was modeled using mechanical analogs such as Burgers model.

Crystallinity and Orientation Development in Poly(L-Lactic Acid) Fibers during Annealing and Drawing
Jing Zhang, Jing Wu, May 2005

The crystallinity and orientation development in melt-spun poly(L-lactic acid) (PLLA) fibers are studied by in-situ synchrotron 2-D wide-angle x-ray scattering under various thermal and mechanical treatments. Crystalline orientation is evaluated from the azimuthal profiles of (200) and (203) diffractions. Crystallinity and orientation are found to be strongly dependent upon the take-up speeds of spinning. When fibers are heated above the glass transition, re-crystallization is observed. The effect of drawing above Tg on crystallinity and orientation are also characterized.

Enhanced Wood-Plastic Composite utilizing Controlled Architecture Materials (CAM)
James M. Nelson, Ryan E. Marx, John W. Longabach, Neil Granlund, Terri A. Shefelbine, May 2005

Controlled architecture materials (CAMs) (ie. Block copolymers) are being explored as specialty additives in wood polymer composite processing with the goal of improve processing, surface aesthetics, reducing edge tear, improving flexural and tensile strength. Performance testing of these materials versus known additive systems in profile extrusion and injection molding environments are reported. Migratory additives based on fluorinated block copolymer s and their ability to modify polyolefin surface properties at low loading levels and low fluoromonomer content are introduced.

Development of Combined Socket and Butt through Transmission Infrared Welding of Polyethylene Pipes
Donghun No, Avraham Benatar, May 2005

Welding of polyethylene (PE) pipes of different diameters is critical for the infrastructure of gas transmission as well as for numerous other industrial applications. A relatively new method of combined socket and butt through transmission infrared (TTIr) welding was developed. A prototype infrared welding system was constructed and it was used to evaluate the effects of welding parameters on the combined socket and butt welding of 60 mm outer diameter high density PE gas pipes. In addition, we evaluated the effects of coupling thickness on power transmission of the infrared radiation and the effects of coupling thickness and width on weld strength. Under the correct welding conditions it was possible to create very strong welds without deformation of the coupling, no discontinuities in the butt joint, and with minimum inner bead. The size and shape of the inner bead was also found to be a good indicator of weld quality and it may be useful for inspection of completed welds.

Portable, Tube-Based XRF Analyzer for Quick PPM-Level Metals Analysis in Polymers
R. Koch, B. Hubbard-Nelson, K. Russell, D. Sackett, May 2005

A portable tube-based XRF analyzer provides fast, confident screening and sorting of polymers during manufacture, recycling and disposal. It rapidly sorts PVC, Br- or Sb-based plastics and quantifies Cl, Br and Sb content with excellent detection limits. The analyzer also quantifies As and other toxic metals such as Pb, Cd, Hg, and Cr for compliance with ECD2002/96/EC & RoHS (Restriction of Hazardous Substances) for WEEE (Waste Electrical/Electronic Equipment). X-ray tube-based XRF systems replace the need for multiple isotopes and eliminate their burdensome radioactive source regulatory issues, particularly for interstate and international travel. Integrated PDA & iPAQ Pocket PC affords flexible software, exceptional graphical user interface & conventional MS windows architecture. This also makes available value-added accessories like wireless email and data transfer, global positioning, binary storage, and multiple language display.

Nanocomposites of Polyamide 6/Metallocene Polyethylene/Grafted SEBS with Montmorillonite
R. Perera, C. Rosales, M. Cafiero, S. Da Silva, T. Poirier, May 2005

Nanocomposites of montmorillonite (MMt) and ternary blends of Polyamide 6/Metallocene Polyethylene/SEBS grafted with diethyl maleate (PA6/mcPE/SEBS-g-DEM) and maleic anhydride (PA6/mcPE/SEBS-g-MA) were prepared in an internal mixer (Rheomix) in order to improve the toughness of the nanocomposite counterpart prepared with PA6 and MMt. The PA6/MMt nanocomposite was the matrix or continuous phase whereas the mcPE was the dispersed phase and the grafted SEBSs were the compatibilizer agents. Tensile properties were measured and transmission and scanning electron microscopy were used to characterize the nanoclay and phase dispersion, respectively. The results showed that the incorporation of the metallocene polyethylene produced a decrease in the embrittlement of the nanocomposite unfolding a higher rupture strain. The use of SEBS-g-MA instead of SEBS-g-DEM is a better alternative from the mechanical behavior point of view. TEM micrographs showed that tactoid, intercalated and exfoliated structures were obtained.

Analysis of Heat Transfer in Combined Socket and Butt through Transmission Infrared Welding of Plastic Pipes
Donghun No, Avraham Benatar, May 2005

Combined socket and butt through transmission infrared (TTIr) welding of plastic pipes involves radiant heating of an absorbing element that is placed at the weld interface with air cooling of the exterior of the socket. For successful welds it is important to minimize deformation of the socket while providing sufficient heat input to form the butt weld. Therefore, modeling of heat flow is important. To better understand the heat flow that occurs, infrared radiation transmission measurements were performed for couplings of different thickness. Thermocouples were also used to measure the temperature history in the pipe. The experimental results were then compared to analytical models as well as complex finite element models of the heat flow. Good agreement was found between the experimental results and the theoretical models. These models can be used as a tool to analyze and optimize the heating and temperature in the weld zone under different welding conditions.

Interfacial Effects in Replication of Nano-Scale Features
Chinnawat Srirojpinyo, Sung-hwan Yoon, Jun S. Lee, Joey L. Mead, Carol M.F. Barry, May 2005

While injection molding provides the ability to produce nano-scale features at high rate high volume, the interfacial effects between the polymers melt and the tooling become more critical than with macro-scale parts. Parts molded from four amorphous materials, a cyclic polyolefin, polystyrene, polycarbonate, and polymethylmethacrylate, were characterized for part replication using atomic force microscopy. Part replication (i.e, depth ratio and feature definition) were correlated with the measurements of contact angle which then can be quantitatively converted to the wetting and surface tension. Suggestions are made for improving the replication of nano-scale features.

Three Dimensional Fiber Orientation in Vibration Welded Joints of Glass Fiber Reinforced Polyamide-6
Young-Mi Chung, Rodolfo Gómez, Musa R. Kamal, May 2005

A technique to obtain fiber orientation distribution was developed for the vibration-welded joints of polyamide-6 with 30% glass fiber. The heat affected zone (HAZ) of fiber reinforced polyamide-6 was successfully revealed by polishing and etching the HAZ. Under the polarized microscope in reflected light, detailed microstructure domains including bulk crystal zone and HAZ were observed. To obtain quantitative measurement of three dimensional fiber orientation distribution, orientation tensors were calculated from elliptical fiber cross section images. The fibers in HAZ were highly oriented toward the squeeze flow direction compared to the bulk phase. Thicker HAZ does not guarantee more random fiber orientation by average but higher fiber population more randomly oriented. High weld pressure at low amplitude promotes fiber reorientation in the tensile direction and thus weld strength.

Thermal Stress Analysis of Plastic Processing Tools
Yi Zhang, Mohammad Usman, May 2005

To transform the plastic materials into final products, plastic processing tools have to go through heating and cooling cycles. The dramatic temperature change develops thermal stress, often to a level where the tools start to crack. In this paper, we first reviewed the fundamentals of the thermal stress and strain. Then two case studies were presented to demonstrate the importance of considering the thermal stress in tool design. The CAE simulation proved that both cast skin tool and injection molding tool cracked due to high thermal stress. To reduce the thermal stress, the cast skin tool was required to allow freer expansion and contraction through using less constrained clamps, while the injection molding tool had to beef up the tool design at the weak spot.

Study of the Properties of Polypropylene/Cassava Starch Composites
J. González, C. Albano, R. Perera, M.N. Ichazo, M. Hernández, I. Alvarez, May 2005

The purpose of this work was to study the effect of incorporating cassava starch, in proportions of 10, 15 and 20 wt%, into Polypropylene (PP). All composites were mixed in a co-rotating twin-screw extruder. Blends were characterized using the DSC, TGA and Capillary Rheometry techniques. Tensile properties were also evaluated. Results obtained indicate that the crystallinity degree remains unchanged when the filler is incorporated. However, when the compatibilizer (Polybond 3150) is added, the crystallinity degree decreases independently of its percentage in the composite. All blends showed a pseudoplastic behavior and a rise in melt viscosity when the filler content was increased. Regarding the mechanical properties, an increase in Young’s Modulus and a decrease in elongation at break were obtained when cassava starch content was increased. The addition of Polybond produced a significant increase in the Young’s Modulus values.

Design and Pressure Rating of PE Fittings; Stress Concentrations, Slow Crack Growth and the Use of Regression Coefficients in Material Choice
Ernest Lever, May 2005

The various test methodologies for approving fitting designs will be reviewed and their applicability to predicting the expected lifetime of a pipe/fitting assembly will be discussed. The differences between ASTM and ISO methodologies in determining design coefficients and factors of safety will be reviewed before discussing the primary long-term mode of fitting failure that is Slow Crack Growth (SCG) from the area of highest stress concentration. This area of highest stress concentration is usually situated at the edge of the fusion joint, be it a conventional socket, sidewall or electrofusion joint. These stress concentrations can be accurately predicted by non-linear Finite Element Analysis. The stress values determined by this method can be used in conjunction with ISO 9080 Stress Rupture Curves for the fitting material to predict fitting lifetime. This predictive approach will be discussed

Fabrication of Nanocomposites Using Twin Screw Extrusion
Arun K. Kota, David Bigio, Hugh Bruck, Bjoern Ritter, Dan Powell, May 2005

Nanocomposites, with superior material properties, have promising potential applications in almost every field. The present work aims at developing a reproducible and continuous fabrication process to obtain the nanocomposites of aluminum nanoparticles that are uniformly dispersed in a polymer matrix and carbon nanotubes (CNTs) that are uni-directionally oriented in a polymer matrix. Due to its mixing potential, extrusion through a 28 mm Werner and Pfleiderer Twin Screw Extruder (TSE) was chosen to fabricate the nanocomposites. The aim of this research effort is to understand the nanoscale mixing characteristics of TSE using aluminum nanoparticles and CNTs, and to obtain the alignment of CNTs via extrusion through microchannels. Experimentally obtained residence time distributions of the mixing process were used to relate the mixing within the TSE to the microstructure of the extrudate. The microstructure of the nanocomposites has been characterized with scanning electron microscopy.

Mean Plus – The Absolute Correction of Instrumentally Generated Spectrometer Values
Jack A. Ladson, Hugh Fairman, May 2005

We developed a software program that corrects known, systematic spectrophotometric errors seen in commercial spectrophotometers today. This enables users of spectrophotometers to correlate color values from around the world so that they will be nearly identical. This includes instruments manufactured by different manufacturers, and instruments manufactured by the same manufacturer. The program works on six different modalities; including bi-directional geometries; that is, 45°/0°; hemispherical, either d/0° or d/8° geometries; or multi-angle geometries. Multiangle geometries are used to characterize and assess gonioapparent inks and coatings. It is not necessary that both instruments be of the same geometry.We summarize the performance of the software in the following statement: For modern instruments that are close in performance; that is less than 1 DE*ab one can expect that the errors will be reduced to an average of less than 0.10 DE*ab unit across 14 BCRA tiles. This agreement or correlation between two instruments can be relative; that is one instrument to another, or absolute; that is, correlating one or more instruments to a reference international standardization laboratory.ISOi and CGATS.5ii recommend methods to improve inter-instrument agreement. The software uses traceable artifact standards to do the training. Implementing this program allows conformance to in-house certification programs, ISO requirements, and CGATS. This is of particular importance to those who utilize ICC profiling.The Mean Plus program is designed to be readily incorporated into your existing software. There are multiple implementation methodologies available. For instance; it can be incorporated into your existing software through a DLL, Dynamic Linked Library. It can be used externally in post processing modes with an MS Excel spreadsheet, or it is available in a full-featured, customizable, quality control package. This program operates transparently to the user. Included with th

Numerical Simulation of a Multiple Valve Flow Control System during Injection Molding Processes
Gregory S. Layser, John P. Coulter, Alexander I. Beaumont, May 2005

Process control is an important factor for improving the performance and consistency of thermoplastic parts manufactured by injection molding processes. A critical process parameter for manufacturing of high quality plastic parts is cavity pressure. This paper presents a continuation of a numerical based study of flow control utilized during multi-cavity injection molding processes. The capabilities of the current system design are limited by multiple valve interactions. Obviously, the valves are coupled with one injection source. Valve interaction may produce undesirable effects on pressure distribution in multiple cavities and should be studied further. With much attention addressed to multi-cavity family molding, the extension to multiple valve systems of 4, 6, and 8… would be beneficial and an interesting study. Understanding the flow modeling details through a single valve system is essential, thereby reducing the computational work involved with a multiple valve system.

Human Osteoblast Development on Polycaprolactone and Polycaprolactone/Hydroxyapatite Composite Scaffolds for Tissue Engineering
Stacey Russell, Aldo Crugnola, May 2005

The study investigated the growth and adhesion of normal human osteoblasts (NHOst) to two different biodegradable systems. These materials included polycaprolactone (PCL) and polycaprolactone/ hydroxyapatite (PCL/HA) composite.We studied the attachment of osteoblasts to two-dimensional films of these materials. We specifically looked at the potential of these two biodegradable systems to promote bone tissue growth. The materials were cast into two-dimensional films. They were evaluated for functionality, growth and adhesion at designated intervals using microscopy and bone-specific alkaline phosphatase (BAP) and osteocalcin (OC) immunoassays.The cells on the composite scaffold produced more BAP than the cells alone or on the PCL scaffold. However, the cells on both types of scaffolds showed lower levels of OC than the cells alone.

Thermal and Rheological Evaluation of Pharmaceutical Excipients for Hot Melt Extrusion
Michael Read, Karen Coppens, Mark Hall, Pam Larsen, Shawn Mitchell, Uma Shrestha, May 2005

Hot melt extrusion (HME) technology is becoming more broadly practiced in the Pharmaceutical industry. It offers many advantages over alternative pharmaceutical processing technologies such as wet granulation, solution casting, etc. A thorough understanding of the thermal and rheological properties of the polymeric excipients used is an important consideration during the selection of the excipient and processing conditions. The purpose of this paper is to report an experimental study that characterizes the thermal and rheological properties of hydroxypropyl cellulose (HPMC), ethylcellulose (EC), and polyethylene oxide (PEO). Thermal characterization was performed via DSC and TGA to identify transition (Tg/Tm) and degradation temperatures. Rheological performance was characterized by torque rheometry on a batch mixer and on a slit-die rheometer supplied by a single-screw extruder.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net