SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Recycling

Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
INJECTION MOLDS IN CLEANROOM ENVIRONMENTS
Peter Röstel, Thomas Seul, May 2012

The cleanliness of production facilities is an important quality factor. Higher purity minimizes environmental influences and in this way a better process control can be obtained. Therefore, the use of clean room technology is establishing in industries like automotive more and more. To maintain the controlled contamination throughout the process, injection molds, which are intended for production in clean room environments must be adequate to special needs. Special coatings for lubricant-free manufacturing support these concepts.

BIOMASS MATERIALS, SHAPE MEMORY POLYURETHANE
Jia Hong Li, May 2012

In this study, the aliphatic or aromatic isocyanates and poly-alcohols was used to synthesize polyurethane with shape memory function, which the polyol was derived from the biomass polylactic acid (PLA). The recycled PLA was degraded into the low molecular weight PLA (Mw 1,000) and the chain extension agent (1,4-butanediol, BDO) reaction was added to form biomass polyol. The analysis of Fourier transform infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were proved the synthesis of polyol. The recovery ratio of shape memory and mechanical properties of polyurethane were improved significantly due to the urea structure, the biomass polyurethane with shape memory could be increased up to 95% of recovery ratio. Different isocyanate (hexamethylene diisocyanate, HDI, or 4,4- diphenylmethene diisocyanate, MDI) were compared and found that the functional group of aromatic was better than that of aliphatic in the synthesis of polyurethane with shape memory behavior.

CARBON NANOTUBES IN BLENDS OF THERMOPLASTIC STARCH/POLYCAPROLACTONE CARBON NANOTUBES IN BLENDS OF THERMOPLASTIC STARCH/POLYCAPROLACTONE
Ata Taghizadeh, Basil D. Favis Ata Taghizadeh, Basil D. Favis, May 2012

Polycaprolactone (PCL) has been blended with thermoplastic starch (TPS) and carbon nanotubes in different compositions. The localisation of solid particles is an influential factor in filled polymer blends. Hence, SEM and TEM images have been used to investigate the morphology and localisation of nanofilled-polymer blends. .The blending of a semicrystalline polymer with another polymer or nanofillers will also change the thermal properties of the polymers in different ways. This change has been studied by non-isothermal crystallization curve analyses. These results were interconnected in such a way that it was possible to confirm the localisation from thermal properties.

LATEST UV COATING TRENDS
Abdullah Ekin, May 2012

The UV-cure segment’s growth can be attributed to the coatings’ many competitive advantages, including low energy costs, no pot life issues, reduced environmental impact and a fast cure speed. In fact, one-component (1K) UV-cure coating technology is one of the fastest chemistries currently available. This paper will discuss trends within the two main UV coating platforms – 100 percent solids UV formulation and waterborne UV systems. Both are sustainable chemistries, having ultra-low-volatile organic compound (VOC) levels.

CHAIN EXTENSION OF RECYCLED POLYAMIDES : HOW TO INCREASE THE AMOUNT OF RECYCLED PA IN THE AUTOMOTIVE INDUSTRY
Elodie Gaouyat, May 2012

The present work attempted to implement reactive compatibilisation of blends of recycled engineering plastics, more particularly the case of recycled PA66 contaminated by recycled PA6. Low molecular weight, high Tg Styrene-Maleic Anhydride copolymers were tested as chain extenders / compatibilizers. It appeared that the addition of 2% by weight of SMA to an incompatible system of recycled PA6 and PA66 improved both ductility and impact performance by factors of at least 10 and 1.5 respectively. Moreover, high Tg SMA improved performances at elevated temperature, partly due to its ability to effectively crosslink but also because of its inherent heat resistance.

MAXIMIZING TALC BENEFITS IN DURABLE PLA APPLICATIONS WITH LUZENAC HAR®
Saied H. Kochesfahani, Caroline Abler, Jerome Crepin-Leblond, Frederic Jouffret, May 2012

The use of talc in PLA compounds for durable applications has been studied, and it is shown that talc could significantly increase stiffness, reduce thermal expansion (CLTE), and enhance thermal stability and HDT of crystallized PLA compounds. The high aspect ratio Luzenac HAR talc could be used to maximize these functions or to achieve desired mechanical properties at lower talc loadings, which may be desirable for compostability or other requirements.

CHARACTERIZATION OF MICRONIZED RUBBER POWDERS WITH COST EFFECTIVE PERFORMANCE BENEFITS IN RUBBER COMPOUNDS
Ravi Ayyer, Tom Rosenmayer, Frank Papp, May 2012

Micronized Rubber Powder (MRP) is classified as dry, powdered elastomer in which a significant proportion of particles are less than 100 microns. It is used as a compound extender to offset the spiraling prices of natural and synthetic virgin rubber materials. MRP is typically made from cured elastomer feedstock via a cryogenic process at a temperature below the Tg of the polymer. A better understanding of MRP surface properties is needed to facilitate efforts to utilize the material as a high value, sustainable material for use in various industrial and consumer rubber products. An update on MRP characterization is presented, including surface morphology by SEM, surface chemistry by XPS, surface area by Kr BET, and particle size distribution by laser diffraction. An example is given that demonstrates how the surface chemistry can be used to explain the effect of MRP on cure and physical properties in rubber compounds.

MELT EXTRUSION AND FILM PROPERTIES OF SOY FLOUR/POLYETHYLENE BLENDS FOR PACKAGING APPLICATIONS
Christopher Thellen, Jo Ann Ratto, May 2012

Blends of soy flour and linear low density polyethylene were melt-compounded at soy loading levels of 0-40% with and without a compatibilizer. Films were formed from the blends through compression molding and were characterized for thermal, mechanical and barrier properties. Measured shifts in the glass transition temperature of the soy component with and without compatibilizer are reported. Oxygen and water vapor permeation rates of the films are also presented and compared to the neat polyethylene film.

COMMERCIALIZATION ROADMAP OF BIOPOLYMERS & BIOCOMPOSITES
Sam McCord, Mike Parker, May 2012

The advent of new base raw materials composed of recycled post consumer/post industrial plastics combined with organic bio fibers that up to now had no value added/sustainable use, has created a global market for a new classification of materials, Bio Fiber Composites. Fundamentally, these composites reduce the hydrocarbon content, (oil) replaced with natural fillers in the form of organic “renewable.” This family of materials is best suited to replace pure polymers, and drives the green, sustainable shift of achieving a balance of physical and mechanical properties to produce the goods and components needed across the complete product landscape. Any product that is injection molded, extruded, thermoformed, or rotationally molded today, can be replaced with a natural organic filled BioComposites Materials. MCG BioComposites, LLC has been formed to supply this place in the industry. This paper will demonstrate the uses and commercial applications for various biomasses, i.e., corn cob fiber, flax fiber and wheat starch.

PHA BIODEGRABLE BLOW-MODLED BOTTLES: COMPOUNDING AND PERFORMANCE
Joseph Greene, May 2012

PHA biodegradable plastics can be made into biodegradable bottles with reasonable impact and tensile strength. PHBV and P(3HB-4HB) grades of PHA were compounded with processing additives and blow molded into bottles with an extrusion blow molding process. Mirel based P(3HB-4HB) had superior processing properties and demonstrated a wide processing window to two other PHA materials. Mirel based P(3HB-4HB) had superior tensile and impact properties and superior permeation resistance than two other PHA materials from China.

CROSS-LINKING OF HYDROGEL WITH A NEW WATER-SOLUBLE AGENT, DIISOSORBIDE BISEPOXIDE
Herman Suwardie, Bhavita Joshi, Eleanor Ojinnaka, William B. Hammond, George C. Collins, May 2012

Cross-linking of polymeric biomaterials has increased in interest over the last 5-10 years. One category of biomaterials is hydrogel, a chemically cross-linked network that swells when immersed in water. Dextran, a polysaccharide, can be crosslinked to form hydrogels that have found application as tissue scaffolds and delivery devices. In this study, dextran is cross-linked with diisorbide bisepoxide, a water soluble chemical cross-linker. The gelation temperature and gel time will be monitored using oscillatory rheometer.

CRYSTALLIZATION BEHAVIOUR OF POST-INDUSTRIAL WASTE NYLON COMPOSITES
Paul Lem, Philip Bates, B. Baylin, J. Vanderveen, May 2012

This study examined the crystallization behaviour of polyamide 6 from post-industrial carpet waste (PIW6-GF) and virgin polyamide 6 (PA6-GF) - both reinforced with 30 wt% glass fibers. Neutron activation analysis was used to detect the presence of contaminants – principally TiO2, a common pigment in carpet fibers. Once the Ti content in the glass fibers was accounted for, the TiO2 contents in the resin fraction of PIW6-GF and PA6-GF were estimated to be 0.14% and 0% respectively. Differential scanning calorimetery (DSC) was performed to assess the overall level of crystallinity and rate of crystallization. Experiments showed that, regardless of the cooling rate, PIW6-GF started to crystallize sooner and at higher crystallization temperatures than PA6-GF. This was attributed to the presence of TiO2 acting as a nucleating agent. Towards the end of the crystallization process, the rate of crystallization for PIW6-GF was observed to slow down relative to PA6-GF. At the highest cooling rates attainable in the DSC (200 °C/min), PA6-GF completed crystallization before that of the PIW6-GF compound. This reduction in crystallization rate is again attributed to the nano-scale TiO2 that could be interfering with the later stages of the crystallization process. The total crystallinity of moulded parts was observed to be greater for PA6-GF than PIW6- GF. Dynamic mechanical thermal analysis (DMTA) was performed on both materials one minute after ejection from a 30°C injection mould. This allowed the capture of rigidity data during the cooling of the specimen at a constant temperature of 25°C. PIW6-GF parts exhibited significantly lower complex moduli during the 30 minutes after moulding. Interestingly, modulus values at 25°C of both materials measured one week after the moulding were equal. The slightly lower crystallinity and the slower rate of crystallization are the suspected causes of this stiffness difference.

DEECOM®: A SUSTAINABLE PROCESS USED IN VARIOUS RECLAMATION PROCESSES
Sue Reynolds, May 2012

Polymer manufacturing utilizes metal parts which are reclaimed for reuse. Traditional reclamation methods utilize solvents and other chemicals which have high energy demand and involve expensive disposal methods. The DEECOM® technology, solvent-free relatively low temperature reclamation technology, is based on pressure swing techniques designed to physically disrupt and remove polymer from parts. The process mechanism results in filter reclamation procedures that have high degree of sustainability and provide opportunity to recycle the removed polymer.

DESIGN OF INDUCTION HEATING MODULE FOR UNIFORM CAVITY SURFACE HEATING
Yu-Ting Sung, Yu-Ning Lin, Sheng-Jye Hwang, Huei-Huang Lee, Durn-Yuan Huang, May 2012

Electromagnetic induction heating has many advantages such as fast heating, low energy consumption and environmental pollution reduction. Using induction heating for rapid tool heating is more economic and efficient than any of the tool heating technique. Previous studies using electromagnetic induction heating for rapid tool heating indicate that the temperature uniformity on cavity surface is not easy to be achieved no matter with surface or insert type induction heating. In this paper, a series of experiments were conducted to study the effectiveness of temperature uniformity on mold cavity surface for different induction heating coil. The parallel type coil and magnetic flux concentrators were adopted to form the induction heating device. According to the results of heating experiments, the surface temperature of 10 mm thickness hot work die steel (JIS SKD61) could rise from 50°C to 150°C in 15 seconds and the temperature uniformity of the heated zone reached 94%~95%.

DETERMINATION OF ENVIRONMENTAL STRESS CRACKING FAILURE MODE IN INVESTIGATIONS OF CPVC FIRE-SUPPRESSION SPRINKLER PIPE FAILURES
Anand R. Shah, Dale B. Edwards, May 2012

This paper discusses three separate failure analysis case studies involving Chlorinated Polyvinylchloride (CPVC) fire suppression sprinkler pipe(s) alleged to have failed due to Environmental Stress Cracking (ESC) from exposure to an incompatible chemical. The investigations highlight the importance of the interpretation of fracture surface morphology, review of background information regarding service history, performing material characterization testing, as well as developing an understanding of the interaction of various chemicals with CPVC material when attributing a failure of CPVC sprinkler pipe to ESC. The case studies discussed are helpful in understanding the ESC mechanism in CPVC sprinkler pipes, which is a complex failure mode. This paper discusses the technical issues that should be addressed in determining whether ESC is the primary cause of failure in a CPVC fire suppression sprinkler pipe system.

RECYCLE TECHNOLOGY OF USED PLASTIC MATERIALS
Hobuyuki Imamura, Masahiro Muto, Tatsuro Ueda, Kazushi Yamada, Hiroyuki Nishimura, Hiroki Sakamoto, Shinichi Kawasaki, Takahiro Nishino, May 2012

This paper describes the recycle technology of used plastic materials such as waste HDPE films and containers, waste caps for PET bottles, and used PET bottles with caps and films. The fusion joining strength of extruded sheets of waste HDPE films and containers using a compatibilizer was firstly studied. A compounding technology of used PET bottles with caps and films using a compatibilizer was secondly studied.

DETERRA® BIOBASED POLYMERS-NEXT GENERATION MATERIALS FOR DURABLE APPLICATIONS
Adam R. Pawloski, Brandon J. Cernohous, Ashley Pinault, Jeffrey J. Cernohous, May 2012

In the past decade, the market for biobased polymers has grown dramatically. Much of this growth has been in the packaging market, where biobased polymer films (i.e., PLA and PHA) have displaced conventional LDPE and LLDPE. Packaging is a natural application for biobased polymers given the short life cycle and consumable nature of this product. Recently, consumers have begun to demand green alternatives in applications where durable plastics have historically been utilized. For example, PVC has been under intense scrutiny in recent years. PVC’s inherent chemical nature and the additives it is often formulated with have been identified by several organizations targeting chemicals that can harm the environment. In certain markets, like the building and construction market, there is a salient need for a biobased material that can be used as a PVC alternative. Leadership in Energy and Environmental Design (LEED) certification and other local codes and regulations are creating a new market for durable biobased polymers. One may consider durable biobased polymers a misnomer. However, the inherent nature of biopolymers like PLA, is such that they can function in one environment (e.g., interior building applications), but degrade in another environment (i.e., compost). This work describes several grades of polymeric compounds that been recently developed by Interfacial Solutions for durable applications. These products are currently marketed under out deTerra® Biobased Polymer trade name.

RECYCLING OF POLYVINYL BUTYRAL (PVB) FROM LAMINATED SAFETY GLASS
Achim Schmiemann, May 2012

Polymeric interlayers like Polyvinyl Butyral (PVB) - films between glass sheets make it safe in case of breakage. But, in the case of recycling, the adhesive interlayer makes the laminated glass difficult to cut. Fortunately, the mostly used PVB is a polymer which can easily been solved in different agents. Using this possibility the present investigations show that recovered PVB can be used in laminated safety glass again.

DEVELOPMENT OF LIGNIN-BASED THERMOPLASTICS FOR COMPOSITE APPLICATIONS
Amit K Naskar, May 2012

Current trends in renewable resin systems for composite applications will be presented in this talk. Our recent efforts on synthesis of lignin-based bio-thermoplastics show significant promise. Various methods of establishing chemical synthetic routes for producing lignin-based thermoplastics that can increase the value of lignin by-products will be discussed. Compatibilization of blends of lignin with different polymeric matrices results good thermoplastic for certain lignin loadings. These routes would provide a low-cost alternative, recyclable resins for future composite applications.

EFFECT OF D-LACTIDE CONTENT ON THERMAL BEHAVIOR OF POLYLACTIDE IN PRESENCE OF CO2 DISSOLVED GAS
M. Nofar, W. Zhu, C.B. Park, J. Randall, May 2012

In this study, the effect of dissolved CO2 on the thermal behavior of PLA with various D-contents (with and without talc) has been investigated during the cooling process at atmospheric pressure in a regular differential scanning calorimeter (DSC) and a high-pressure DSC. The results show that the crystallinity of PLA samples improves by increasing the CO2 pressure, reducing the D-content, and adding talc. Also, Tg and Tm shift to lower temperatures as the pressure increases, due to the plasticization effect of CO 2.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net