SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Pressure Shear Pulverization (PSP) Process for Thermoplastic and Thermoset Waste
Tapan Patel, Fyodor Shutov, May 1999

A novel process of pulverization known as Pressure Shear Pulverization (PSP) process has been developed for thermoplastics (PE, PP, PS, PVC, PA, PET and/or their mixtures), thermosets (polyurethanes and phenolics), composites, and various blends (thermoplastics and paper). PSP is a proprietary, non-extrusion process and is realized inside a specially designed pulverization head. It is very different from cryogenic grinding, various versions of solid state shear extrusion (SSSE), and other size reduction processes. PSP has several advantages, namely, high output, low specific energy consumption, and low cost of pulverization head. PSP process is capable of producing coarse to very fine particles by manipulating the processing parameters. This paper deals with the development of pulverization of pre-consumer cross-linked LDPE foam waste and LDPE/Paper mixture by PSP process. As a model system, the processibility and properties of virgin LDPE have been studied. Physical properties of LDPE foam waste and polymeric powder have been determined and compared to understand the behavior of polymer under the combined action of thermally and mechanically induced stresses. Lab-scale and pilot-scale PSP machines have been designed and constructed.

Integrated Use of Educational Software for Product/Process Design
J.-M. Charrier, B. Sanschagrin, May 1999

As the use of plastics products in numerous areas continues to rise rapidly, a growing number of personnel in companies, as well as students from academic institutions, have a need for efficient and user-friendly educational tools to acquire the basic knowledge necessary to either undertake a conversion to plastics, or start a career in plastics. Plastics products have to be designed and then manufactured. Probably more than with any other material, the geometric design, material selection and manufacturing must be integrated to get good and economical products. This is related to the wide variety of types and grades of plastics, associated with a very wide variety of applications using a wide variety of distinct processing techniques. We have used our long educational experience in academic environments, as well as our extensive involvement with professional/industrial seminars, to develop a series of interactive CBT programs" (Computer-Based Training programs) which address different needs and complement each other. In this presentation we will emphasize the simultaneous use of the various software to quickly acquire knowledge related to several specific plastic products. Since the softwares were designed to be used in either instruction mode (instructor in classroom situation) or in self-study mode (individuals on their own) we will address these two distinct cases. A brief description of major features of four of our Windows-based softwares is first presented in the following."

Single-Site Catalyzed Polyolefin for Fresh-Cut Produce Packaging - A Comparison between Monoextruded Blends and Coextruded Film
V. Patel, S. Mehta, S.A. Orroth, S.P. McCarthy, May 1999

Single-site and Metallocene catalyzed polymers, such as polyolefin plastomers (POPs) are unique due to their narrow molecular weight distribution (MWD) and comonomer distribution (CD). These factors can dramatically enhance the properties such as toughness, clarity, sealability and oxygen transmission rate. While linear low-density polyethylene (LLDPE) exhibits excellent physical properties and drawdown capability, the combination of both resins via blending or coextrusion provides a mix of film properties very difficult to achieve with individual components. This study examines the performance of monoextruded blown film made from blends of POP1 (0.9038 gm/cc density) and POP2 (0.8996 gm/cc density) with LLDPE (0.922 gm/cc), versus coextruded film made of POP1 40 % (1.0 mil) / LLDPE 60 % (1.5 mil). In addition, a bimodal resin (0.9175 gm/cc) was also compared with the above materials for the fresh-cut produce packaging application. Both monoextruded and coextruded films can be used for modified atmosphere packaging (MAP) of fresh-cut produce. Coextruded film is the best option for low respiration products because of its excellent sealing performance over other monoextruded films. The end use requirements at the reduced cost are better satisfied by bimodal resin film compared to monoextruded films made of POP1 and POP2 with higher LLDPE contents. Monoextruded blends of POPs with lower LLDPE content (< 40 %w) exhibit most of the property requirements of moderate to high respiration rate fresh-cut produce.

Experimental Studies of Inhomogeneous Post-Yield Deformation in LLDPE Films
Amiel B. Sabbagh, Alan J. Lesser, May 1999

Heterogeneous deformation in the form of dilatational bands is observed under certain biaxial stress states which closely resembles uniaxial necking in LLDPE blown films. The formation and orientation of dilatational bands is a function of film morphology and stress state. The dilatational bands form, with their length aligned with the machine direction (MD) of the film, under equibiaxial stress states and nonequibiaxial stress states when the higher principle stress is coincident with the transverse direction (TD). However, homogeneous deformation is observed if the higher principle stress is coincident with the MD. Similarly, uniaxial specimens show necking when the stress is applied in the TD and affine deformation when the stress is applied in the MD. Neck boundary propagation under uniaxial loading is only due to consumption of undrawn material, while dilatational band boundary propagation under an equibiaxial loading also includes simultaneous continued deformation of the drawn material.

Application of Iodine-Doped Poly(p-Phenylene) Langmuir-Blodgett Films as Homogeneous Alignment Layers
Scott C.-J. Tseng, J. Adin Mann, Jr., Jerome B. Lando, May 1999

Poly(p-phenylene) (PPP) ultra thin films oriented by the Langmuir-Blodgett technique were applied as homogeneous alignment layers and provide some orientation. Poly(2,5-dicarboxyl-1,4-phenelene) (PDCP) and o,o',o'-trihexadecanoyl-triethanolamine (NIII) were used to form the precursor salt, which was transformed into PPP LB films via pyrolysis. A pretilt angle of 0.2° was measured via crystal rotation method on antiparallel liquid crystal cells with PPP LB films as the homogeneous alignment layers. Thermodynamic properties of these Langmuir films at the air-water interface such as their isotherms and creep test were studied. These LB films were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy, electron diffractometry and wide angle X-ray diffractometry. Room-temperature electrical conductivity measurements were performed on the high-temperature iodine-doped PPP LB films via a four-probe method.

Novel Stress/Strain Sensors Based on the Mechanochromic Properties of Liquid Crystalline Polydiacetylenes
Suppalak Angkaew, Pak Meng Cham, Jerome B. Lando, Brian P. Thornton, Roberto Ballarini, Robert L. Mullen, May 1999

Polydiacetylenes obtained from a series of liquid crystalline diacetylene monomers and macromonomers (polymers containing diacetylene groups) exhibit mechanochromic behavior in which their original color changes upon exposure to mechanical force (tensile or shearing). These polymers have been used to develop novel, intrinsic stress/strain sensors based on their mechanochromism. Our study of morphology, crystallographic structure, and optical properties showed that the mechanochromism corresponds to structural phase transitions from crystalline to liquid crystalline phase. This paper will also discuss the relationship between chemical structure, optical properties and mechanical properties of these PDAs.

Aniline Oligomer as a Chemical Sensor
Somboon Sahasithiwat, Jerome B. Lando, May 1999

Hexadecamer aniline (16ANi) can be easily dissolved in a mixed solvent of NMP and CHCl3. This mixed solvent allows 16ANi to spread on water and form coherent films. 16ANi multilayer LB-films were successfully deposited on different substrates (e.g. glass, silicon and germanium) with the aid of 22-tricosenoic acid (TA). Uniform films from Y-type deposition were obtained as confirmed by x-ray diffraction and UV-vis spectroscopy. The thickness of each layer is about 29 Å. Mixed films of 16ANi-TA have the same optical properties as polyaniline. The films have been utilized as chemical sensors through measured changes in electrical conductivity.

Applications of FTIR Spectroscopy to Characterize Polymers Processed with Supercritical Carbon Dioxide
S.G. Kazarian, B.J. Briscoe, C.J. Lawrence, May 1999

Supercritical CO2 can induce crystallization of amorphous polymers. Molecular level insight into the microstructures of CO2-processed polymers is needed to form a basis for utilization and optimization of supercritical fluid processing of polymeric materials. FT-IR spectroscopy has been applied to elucidate the morphology and microstructure of polymers processed with supercritical CO2. FTIR spectra of syndiotactic polystyrene show an increased degree of crystallinity after being subjected to scCO2. The various crystalline forms induced by CO2 in syndiotactic polystyrene were characterized via FTIR spectra. FTIR spectroscopy has been also used to measure the kinetics of CO2-induced crystallization in these polymers.

Thermoplastic Composites Containing Deformable Reinforcing Composites
Donald G. Baird, Wei Huang, Jianhua Huang, Robert T. Young, May 1999

The forming and shaping of thermoplastic composite prepregs is severely hindered by the lack of deformability of the reinforcing component (e.g. glass or carbon fiber) and the separation of the matrix from the reinforcing component. In this paper we study the behavior of thermoplastics reinforced with two types of reinforcing components which are deformable in subsequent shaping operations. In particular we investigate the formability of thermoplastics (e.g. polypropylene, polyetherimide, and polyphenylene sulfide) reinforced with thermotropic liquid crystalline polymer (TLCP) micro-fibrils of higher melting point than the matrix and with melt processable glass. Studies include thermoforming, stretching, and compression molding of blanks containing micro-fibrils of both reinforcing materials.

A Method to Quantify the Average Biaxial Orientation of the Crystalline Phase in Polyethylene Blown Films
Rajendra K. Krishnaswamy, May 1999

Following an approach suggested by Kissin (Journal of Polymer Science: Polymer Physics Edition, v30, 1165, 1992), a general form of the Beer-Lambert law was employed to quantify the White-Spruiell biaxial orientation factors for various polyethylene (PE) blown films using IR absorption data at 719 cm-1 and 730 cm-1. It was pointed out that certain assumptions employed by Kissin are invalid for most polyethylene blown films. However, when alternate assumptions based on sound experimental evidence were employed, the resulting orientation estimates were in good qualitative agreement with X-ray diffraction patterns for various low and high density polyethylene blown films.

The Relative Influences of Process and Resin Time-Scales on the MD Tear Strength of Polyethylene Blown Films
Rajendra K. Krishnaswamy, Ashish M. Sukhadia, May 1999

This paper is concerned with the effects of polymer relaxation time (as estimated via melt rheology) and process extension rate (as quantified via an average MD extension rate at the frost line) on the MD tear strength of various polyethylene blown films. An increase in melt relaxation time at constant process conditions or an increase in process extension rate for a given resin (constant melt relaxation time) were both observed to result in lower blown film MD tear strength. These observations were interpreted in terms of molecular orientation and deformation mechanisms in polyethylene, with preliminary data suggesting that interlamellar shear plays an important role in determining the MD tear performance of LDLPE and LLDPE blown films.

Effects of Viscosity Ratio and Compatibilizers on the Morphology Andmechanical Properties of Polycarbonate/Acrylonitrile-Butadien-Styrene Blends
Kumin Yang, Shi-Ho Lee, Jong-Man Oh, May 1999

A comprehensive experimental study was carried out to investigate the effects of 1) viscosity ratio, 2) temperature, and 3) compatibilizers on the morphology of bisphenol-A-polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS). Blends were prepared by utilizing a co-rotating twin screw extruder and in-situ morphology was obtained via the screw pullout technique. Plot of the PC/ABS viscosity ratio, ?PC/?ABS, versus the shear rate showed a gradual rise in the curve up to a critical shear rate and thereafter displayed asymptotic character. Contrary to premise, ?PC/?ABS decreased with increasing temperature. This was elucidated by the melt viscosity of PC being thermally more sensitive than ABS over the temperature range investigated. As expected, plot of the average domain size versus the viscosity ratio gave a concave up curve with a minimum when the viscosity ratio was close to unity. Polymethylmethacrylate (PMMA) exhibited the greatest ABS domain size reduction, and annealed samples showed that it suppressed coalescence.

The Effects of Process Conditions, Nominal Wall Thickness, and Flow Length on the Shrinkage Characteristics of Injection Molded Polypropylene
Patrick M. Gipson, Peter F. Grelle, Brent A. Salamon, May 1999

The use of polypropylene in injection molding large parts, for automotive and durable applications, has increased due to down engineering from high performance engineering thermoplastics such as acrylonitrile butadiene styrene (ABS) and polycarbonate/ABS (PC/ABS) blends. Due to polypropylene's high shrinkage characteristics, the molding conditions used to fabricate polypropylene parts are very critical since they can affect post-mold shrinkage ultimately affecting final part dimensions. This paper will address issues on how injection molding conditions, nominal wall thickness, and flow length will affect the shrinkage characteristics of polypropylene.

Measuring Depolymerization Kinetics of a Methacrylate Using a Novel Optical Technique
F. Rodriguez, T.S. Bean, May 1999

A new and inexpensive analytical tool, thermovolumetric analysis (TVA) is similar to thermogravimeti-ic analysis (TGA) except that it is volume rather than mass which is being monitored. This is a new application of laser interferometry which is especially applicable to thin films of polymers which depolymerize at elevated temperatures. Coatings 300 to 1500 nm thick of poly(n-butyl methacrylate) on silicon are removed in an orderly manner when heated at temperatures up to 300°C. The technique can also be employed with the temperature increasing at a constant rate.

A New, Unique Thermoplastic Elastomer with Enhanced Properties
Johanna Lampinen, Optatech Corporation, May 1999

A new polyolefin-polyacrylate elastomer based thermoplastic elastomer has been introduced on the market. It is produced by a method called solid state grafting and it can be further modified by compounding. Rigid polypropylene or polyethylene copolymer constitutes a continuous phase in which soft crosslinked polyacrylate elastomer is dispersed. The elastomer is a fundamentally new concept offered to compounding companies and the present three base polymer grades provide new alternatives with their moderate price and unique properties. The chlorine-free elastomer offers excellent oil and gasoline resistances combined high flex resistance and good weather resistance. It has also good adhesion to paints, polyethylene, and polypropylene, and the surface smoothness is excellent.

The Effect of Thermoplastic Olefin (TPO) Morphology on Friction Induced Paint Damage
Rose A. Ryntz, Dennis Mihora, May 1999

Damage to painted automotive plastics induced by compressive shear continues to plague the material engineer involved in the design and selection of fascias, bumpers, body-side moldings, and the like. Studies conducted to determine the root cause of such failures have focused on the effects of paint and the role of friction in the compressive shear failure of painted thermoplastic olefins (TPOs), which are blends of poly(propylene) and elastomer. The study described herein probes the effects of TPO morphology on compressive shear damage resistance of painted TPO substrates. Morphological variations within the subsurface of the TPO substrate caused by compositional as well as injection molding variations will be described. The apparatus utilized to impart the damage, SLIDO, and the variables studied affecting the damage, e.g., acceleration, velocity, temperature, and loading, will be discussed.

Extrudate Prediction and Die Design of Profile Extrusion
Woei-Shyong Lee, Sherry Hsueh-Yu Ho, May 1999

The objective of this study is to investigate the die swell behavior of a polymer melt and to predict the final shape of the polymeric extrudate formed by profile extrusion. The finite element method was used to simulate a Newtonian fluid passing through a die with the geometry of a quarter ring profile. Based on the swell studies, a modified die was designed to produce a quarter ring profile extrudate. Polystyrene pellets were chosen to perform the profile extrusion experiments. The theoretical and experimental results confirm that suitable operating conditions and die geometry can improve the die swell phenomena. The die swell ratio becomes smaller as the melting temperature and melting residence time are increased. As the die length is increased, the die swell ratio is lowered. According to the prediction of die geometry, an extrudate with the desired profile can be made precisely.

Material Screening Process for Medical Film Applications
Jerry Davis, Joyce Silvestri, Sr., May 1999

The dynamic medical market in the '90's is experiencing rapidly changing, highly specialized therapies and treatments. These products require device components and container systems with narrow product definitions. To meet this demand, the leading edge companies continue Tto develop methods that will shorten their development cycle One cornerstone in cycle time reduction is having an established Product Development Process encompassing material screening. The process integrates identification of team membership, product definition, design reviews, and screening requirements. The effective process will optimize utilization of the human and financial resources of an organization.

Compatibilization of Polypropylene/Polyethylene Terephthalate Blends and Composites
Kimberly M. McLoughlin, Sharon Jones Elliott, Edwin B. Townsend IV, May 1999

Traditionally, polypropylene (PP) mechanical properties have been enhanced by compounding PP with inorganic fillers. Recently, fillers have been added to PP-based polymer blends to create composites with even greater ranges of properties. In a previous study, we examined glass-filled PP compatabilized using maleic anhydride-grafted polypropylene (PP-g-MA). We reported adding a small percentage of polyethylene terephthalate (PET) to those materials enhances mechanical properties. Here, we confirm that adding a small amount (15% or less) of PET to glass-filled PP containing PP-g-MA yields significant increases in tensile strength and flexural modulus. We also demonstrate that the property enhancements achieved by adding PET to glass-filled PP can be used to reduce the amount of glass in the system without significantly reducing mechanical properties

Future Overlays for Composite Bridges
Arif J. Chawalwala, Reynaldo M. Ong, May 1999

The smooth surface of a composite bridge deck pose a significant problem for bonding of an overlay surface. Previous research conducted using cementitious overlays have shown significant delaminations of the overlay when subjected to flexural loading. Epoxy overlays possess superior bonding and other mechanical characteristics, and have been successfully used on concrete-filled steel grid and steel orthotropic decks. Besides, they reduce the overall dead load on the structure due to its thin application. This work presents a brief overview of the properties and future potential of epoxy overlays for composite bridge decks.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net