SPE-Inspiring Plastics Professionals

84 countries and 22,500+ members strong, we unite plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.




SPE Insight


  • SPE recently announced its accreditation with the United Nations Environment Assembly (UNEA). This noteworthy distinction establishes SPE as a primary constituent within UNEA’s esteemed scientific and technological community, which is shared by only eighty-seven organizations globally, and just twenty-five within the United States. SPE President Conor Carlin expressed his enthusiasm about this significant milestone, stating, “This accreditation marks a pivotal moment for SPE and its stakeholders." 


  • Dr. Asami Nakai has been appointed Editor of SPE's technical journal, Polymer Composites, effective July 1, 2024. Nakai brings a wealth of academic and research experience to her new role. She graduated from the Faculty of Textile Science at Kyoto Institute of Technology (KIT) in 1994, earned a M. Eng. from KIT’s Department of Polymer Science and Engineering in 1996, and completed her D. Eng. at the University of Tokyo in 1999. She has published over 130 peer-reviewed articles and 19 book chapters and has chaired international conferences in polymer and composites science.


  • The new Girl Scout Gold Award SPE Foundation Grant is now available for eligible Girl Scouts who wish to make a positive impact on community recycling, sustainability, or diversity in STEM, helping fund scout troops interested in participating.


  • SPE’s NEW Premium Membership takes you to the next level of your SPE member experience. Unlocking additional benefits provides you with more opportunities to advance your career-building education. Premium Membership includes all Professional Member benefits PLUS 10+ Select webinars, additional discounts, and deeper technical resources. Join now as a Premium Member OR upgrade your current membership and reap major membership rewards!


 

SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Thermoplastics Materials and Foams

incorporating Unmodified Lignin into Flexible Polyurethane Foams Formulation
Akash Gondaliya, May 2020

Industries that use polyurethane foam are looking for new sustainable and greener material to replace the petroleum-based polyols. Lignin produced as byproduct of pulp and paper and bioethanol industries is a suitable natural polymer to replace petroleum-based polyol in formulation of PUs. The emphasis was to study effect of different lignins obtained from different chemical processes and plant sources on the structural, mechanical and thermal properties of PU flexible foam and to achieve maximum lignin substitution. Additionally, we were interested to find correlation between lignin properties and performance of lignin-based PU foams to identify which lignin properties would affect the performance of developed lignin-based flexible PU foams and find the most suitable lignins for this application. It was seen that lignins isolated through organosolv process were better for PU fiexible foam applications. Overall, substitution of polyol with lignin increased compression strength, support factor, tear propagation strength and tensile strength of the developed PU foams.

Numerical Analysis of Polymer Micro-foaming Process in Extrusion Flow
Lixia Wang, May 2020

In this paper, effects of microviscosity and wall slip were considered, and a mathematical model of isothermal extrusion micro-foaming process was adopted based on classical nucleation theory and cell model. A simulation scheme of the extrusion micro-foaming process was conducted combining with the cross-section/imaginary area method and the Runge-Kutta method. The simulation program of the extrusion micro-foaming process was realized on MATLAB. The effects of inlet pressure on evolution of cell morphology and cell size distribution during the extrusion micro-foaming process were analyzed by the numerical examples. The results indicate that the higher the inlet pressure, the higher the maximum nucleation rate, and the closer to the die outlet the nucleation spot, the shorter the growth distance of the bubble, which is more conducive to formatting smaller cell radius and higher cell density.

‘Plug-and-Play’ Weight Reduction Solution by Hollow Glass Microspheres
Steve Amos | Baris Yalcin | Andrew D’Souza | I. Sedat Gunes, May 2011

Fillers have been in use since the early days of plastics. Today’s enormous growth of the polymer industry is due to the unique properties of fillers they impart to polymers. Glass bubbles (low density hollow glass microspheres) as fillers have been incorporated into thermoset polymers for decades. They are tiny hollow spheres and are virtually inert. These glass bubbles are are compatible with most polymers. Until recently, their use with thermoplastic polymers has been limited because of high rates of bubble breakage from the high shear forces to which they are exposed during such thermoplastic processing operations as extrusion compounding and injection molding. At issue has been the strength of the glass microspheres.

Water Vapor Transport Properties of Shape Memory Polyurethane Nanocomposites
I. Sedat Gunes , Feina Cao , Sadhan C. Jana, May 2010

In this paper water vapor permeability (WVP) of thermoplastic polyurethane nanocomposites with crystalline soft segments was evaluated. Organoclay nano-size silicon carbide (SiC) and a high structure carbon black (CB) were mixed with shape memory polyurethane (SMPU) based on semi-crystalline soft segments. All nanocomposites were prepared by bulk polymerization using a Brabender internal mixer. Compression molded specimens were used in the determination of WVP. The results indicated that the presence of silicon carbide augmented WVP by reducing the soft segment crystallinity whereas that of organoclay reduced the WVP considerably due to excellent exfoliation.

Wood Plastic Composite
Prithu Mukhopadhyay, February 2006

Wood and plastic are best friends these days. They can be combined to give the aesthetics of wood with the added durability of plastic. Termed as wood/plastic composites - WPCs' are a relatively new family of thermoplastic composites based on wood-fibres and the commodity thermoplastics. The polymers used for WPCs' are the high volume, low cost, commodity thermoplastics - polyethylene, polypropylene and PVC.

A Breakthrough in Foaming Technology
Prithu Mukhopadhyay, March 1999

MuCell process by Trexel Inc. has been touted as a breakthrough technology. The process offers new foaming capabilities. If your business belongs to the categories such as Extrusion (PP, PS sheet & PVC profiles), Blow (HDPE bottles) or Injection moulding (PP, PS, Nylons, PC/ABS and TPEs) then you will profit from MuCell process. The process produces microcellular foams (5-50 micron ranges) using supercritical fluids (SCFs). These fluids like carbon dioxide or nitrogen mix thoroughly in plastic melt since they have the viscosity of gases and the density of liquids. Being environmentally benign, SCFs eliminate the need for chemical or hydrocarbon-based blowing agents. CO2 or N2 are in fluid state as opposed to gas (in gas assist injection moulding); the process generates evenly distributed microscopic cells throughout the plastic. This makes MuCell technology to foam very thin sections (0.5mm/0.20inch).

Mix & Match: New Developments Offer New Applications
Prithu Mukhopadhyay, November 1998

Injection molding process imparts a complex thermal deformation history to polymer melts. The complexity rises with multiphase blend systems. How about development in areas of new materials? Can we not get new resins that would give faster cycle times, high ultimate strength and elongation values combined with a wide spectrum of shore A and shore D hardness grades?







spe2018logov4.png


EVENTS

S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

View All Events