SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Developing Photopolymerizable Acrylate Resin Formulation for Impact Modified 3D Printed Thermosets
Chinmay Saraf | Amy Niu | Alan J. Lesser,, April 2021
This contribution focuses on engineering photopolymerizable acrylate resin formulations for a superior fracture energy absorption of 3D printed acrylate thermosets. Herein, we report a polydimethyl siloxane-based block copolymer as an impact modifier, compatible with the UV curing process, which undergoes reaction induced phase-separation during the 3D printing process to form a rubbery phase sufficient for enhanced impact properties. A systematic investigation of the effect of concentration of the impact modifier on the morphology of rubbery domains and fracture toughness was conducted. Results show that at an optimum concentration of 15 wt.% and particle size of 57 nm, an order of magnitude improvement in the fracture energy release rate is realized. Fractographic analysis of the impact modified thermosets using optical microscopy indicates the presence of significant plastic deformation in an otherwise brittle material. Notably, the engineered acrylate thermosets, at an optimum concentration, exhibit similar improvements in the impact properties irrespective to the print layer thickness and independent of the crack orientation with respect to the printed interphase. Detailed investigation of the failure mechanisms for impact modified thermosets show that the block copolymer diffuses to the interphase during the 3D printing process, resulting in preferential localization of the impact modifier near the print interphase resulting in an isotropic enhancement of the fracture toughness.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net