SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Surface Recovery of PDMS after Exposure to UV/Ozone
Paul Miller, Igor Sbarski, Thomas Gengenbach, Tom Spurling, May 2005

Controlled surface oxidation of polydimethylsiloxane (PDMS) is commonly used in manufacturing of microfluidic devices since it is a very effective method of both bonding PDMS components together, and altering the surface properties of PDMS. The stability of these modified surfaces is crucial in determining the lifetime and reliability of the device. This paper investigates the stability of UV/ozone modified PDMS surfaces using x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM).

XPS Analysis of Uv Curable Adhesive and its Adhesion to PDMS
Paul Miller, Thomas Gengenbach, Igor Sbarski, Tom Spurling, May 2005

Adhesive joints were prepared between polycarbonate (PC) and polydimethylsiloxane (PDMS). This paper presents an x-ray photoelectron spectroscopy (XPS) investigation into the chemistry of adhesion between the adhesive and PDMS. UV pretreatment of the PDMS surface proved essential in obtaining strong adhesion.

Formulation of Optimally Stabilized Poly(Vinyl Chloride) Systems with the Aid of the Chemiluminescence Technique. Part II
Yelena Kann, May 2005

The Chemiluminescence (CL) technique has been shown to be an accurate method to detect the formation of polyene sequences in the degrading PVC compounds. This part 2 of the paper analyzes the functions and performances of different classes of thermal stabilizers and co-stabilizers, i.e. mixed metal carboxylates, mercaptides, organic and inorganic HCl absorbers, phosphites and antioxidants by their CL. The ways of formulation of well rounded stabilization are offered.

Preparation of Poly(Methyl Methacrylate) and Carbon Nanofiber Composites by Chaotic Mixing
Guillermo A. Jimenez, Sadhan C. Jana, May 2005

Composites of poly (methyl methacrylate) and carbon nanofibers were prepared in a chaotic mixer, and electrical conductivity and quality of dispersion were compared with those produced in conventional mixers. The threshold for electrical conductivity was about 1.5 wt. % for materials prepared in a chaotic mixer, while those produced in batch and continuous mixers were not conductive up to a loading of 4 wt. %. Thermogravimetric analysis revealed that the presence of carbon nanofibers delayed thermal degradation of the polymer.

An Investigation into Hesitation Effects in Oscillating Flows
David O. Kazmer, Kathryn Garnavish, Ranjan Nageri, May 2005

The hesitation effect is well known to adversely affect the appearance of molded products. In this paper, the effect of hesitation on aesthetics and dimensional properties is investigated via a design of experiments varying the materials, melt temperature, coolant temperature, injection velocity, and oscillatory time. Analysis and molding validation indicate that hesitation is related to solidification of the melt front rather than changes in melt shear stress.

Performance of a Self-Regulating Melt Pressure Valve
David Kazmer, Vijay Kudchadkar, Ranjan Nageri, May 2005

Injection molding has been limited by the lack of direct flow and pressure control of the polymer melt at multiple points in the mold during the molding cycle. A selfregulating melt pressure valve has been developed whereby the outlet melt pressure is proportional to the control force on the valve pin. This paper validates the capability to provide melt pressure control proportional to the supplied pneumatic pressure without melt pressure transducers.

Design and Performance Analysis of a Self-Regulating Melt Pressure Valve
David Kazmer, Mahesh Munavalli, May 2005

A design for a self-regulating pressure valve is analyzed using a 3D flow analysis that utilizes independent shear and elongational viscosities for the polymer. The regulator is derived from a low force valve design that enables the outlet pressure to be directly regulated by a provided force on a valve pin without need for pressure sensors or a closed loop control system. Analytical and experimental results indicate an excellent level of response and consistency given the simplicity of the design.

Derivation of Process Windows
David Kazmer, Hitesh Mundhra, May 2005

Selection of set-points is of vital importance to the quality and economics of manufacturing processes. However, most recipes are developed from recursive trial and error interpreted via prior human experience. A new analytical procedure based on the Extensive Simplex Method is presented that derives the global process window for an arbitrary number of process parameters and quality specifications that requires minimal process experimentation. The methods are applied to an injection molded component with width, length, and flash specifications and shown to provide excellent results.

A Review of In-Mold Pressure and Temperature Instrumentation
David O. Kazmer, Peter Knepper, Stephen Johnston, May 2005

A survey of commercially available and broadly used pressure and temperature sensors for injection molding is presented. The various pressure and temperature sensing means are reviewed along with the geometry and performance of common transducers. Usage and trade-offs in sensor design and selection is discussed.

Modeling of the Film Blowing Process for High Stalk Bubbles
M. Zatloukal, J. Vl?ek, May 2005

A simple equation with only a few physical parameters for the description of the high stalk bubbles has been derived from variational principles. The proposed equation was used in modeling of the film blowing process and a very good agreement between measured and simulated data was found.

Investigation of Zig-Zag Type of Interfacial Instabilities in Coextrusion
M. Zatloukal, W. Kopytko, J. Vl?ek, P. Sáha, May 2005

Modified Leonov model has been used for the viscoelastic stress calculation in the flat multi-manifold coextrusion die used for LDPE film casting process. It has been shown that specific type of high stress area occurs around the interface at the end of the converging section. This total stress has been found to be nonmonotonic along the interface and related for the onset of zig-zag type of interfacial instabilities when the total stress achieved 200 kPa.

Effect of Impulse Heat Sealing Process Parameters on Bond Strength of Low Density Polyethylene Films
Mathew Raymond, Andrea Leczynski, Jason Iovanna, Amad Tayebi, May 2005

In this paper, process and film parameters affecting the peel strength of impulse heat sealed thermoplastic polymeric films are investigated. In particular, the roles of film thickness and duration/temperature of application of impulse heat sealing tool are investigated for low density polyethylene. The data obtained are particularly useful in flexible packaging and film sealed container applications.

Plastic Piece Stress Analysis Using Simulation Software
R.A. Morales, S.L. Villarroel, D. Garmendia, May 2005

The objective of this work was to evaluate mechanical properties of a cellular phone. Evaluation was made employing two commercial simulation programs. Acting bonds and external forces to simulate the phone opening action were determined. Programs used were capable of modeling static loads for the stress analysis by finite element mesh creation. Maximum wall shear stress and residual stresses showed maximum values in the gate area, in smaller thickness sections.

Finite Element Analysis of Living Hinge Behavior
Eric S. Paszkowski, May 2005

The study investigates the high deformation and resulting high strains occurring during the flex of living hinge designs by putting a finite element model through the full range of motion. It investigates the ability of this technique to predict feature alignment after fully closing by comparing to actual molded parts. It investigates the feasibility of obtaining accurate simulation results from a model that undergoes high element distortion and material model at very high strains.

Visualisation and Analysis of Polyolefin Multilayer Coextrusion Flows
M T Martyn, R Spares, P D Coates, M Zatloukal, May 2005

Flow visualisation studies were preformed to determine process parameters initiating interfacial instability in the coextrusion of polyolefin melts. Slit coextrusion visualisation cells with 30° and 90° convergent streams were studied. Studies were performed using two different extruder arrangements. Stress fields, quantified using birefringence. Concomitant velocity and layer ratios leading to wave type interfacial instability in the polyolefin melts are presented.

Electrically Conductive Immiscible Polymer Blends as Sensors for Chemicals
R. Tchoudakov, E. Segal, M. Letuchy, M.Narkis, A. Siegmann, May 2005

Sensors produced as extruded filaments based on HIPS/ABS/CB and HIPS/LLPE/CB blends were exposed to ethanol, acetone, heptane and benzene. The solubility parameters of the liquid and the blend components are important in determining the sensing level. Sensors based on proper immiscible polymer blends exhibit reproducible and recoverable electrical resistance behavior upon exposure to liquid/ drying air cycles, selectively responding to different liquids or liquid mixtures of different ratios.

Influence of Die Design on Interfacial Instabilities in Coextrusion
M. Zatloukal, M.T. Martyn, P.D. Coates, J. Vl?ek, May 2005

Fully viscoelastic FEM together with flow visualization technique are employed to quantify the effect of the die design on the wave type of interfacial instabilities in coextrusion. It has been shown experimentally that the minor channel geometry has a strong impact on the wave type of interfacial instabilities and the results can be correlated through novel criteria called as Total Stress Difference (TSN), which takes in to account the bulk change of the total stress in normal as well as tangential direction with respect to the interface.

The Warpage of FCBGA by Synthesized Analysis
Wen-Ren Jong, Shu-Hui Peng, Tsung- Hsiang Kuo, Shr-wai Ho, May 2005

The FCBGA can have the advantages of flip chip and BGA to provide the needs of high-speed networking and telecommunications systems. This study tries to predict the accumulated warpage of FCBGA throughout the sequential packaging process. Since IC device is packaged by several kinds of materials with dissimilar properties, the methodology of death-and-birth is used to simulate the existence of components at each stage. The results show similar trend with the experimental verification.

Influence of Curing Systems and Irradiation on Woodflour Filled EPDM Compounds
M. Hernández, M.N. Ichazo, C. Albano, J. González, May 2005

Rheological and mechanical behavior of EPDM rubber filled with woodflour was studied based on blend ratio and curing systems. Irradiation was also studied as an alternative crosslinking method. Results indicate that woodflour accelerates rubber vulcanization. When comparing curing systems, final overall vulcanizates properties did not deteriorate with the efficient system. Concerning irradiation, an optimum dose of 110 kGy was found, since lower doses do not promote crosslinking and higher doses tend to decrease overall properties.

The Dynamic Rheological Behaviors of PP Melt during Pulsatile Extruding Processing
Guangjian He, Jingping Qu, Xianwu Cao, Xiangfang Peng, May 2005

A novel dynamic capillary rheometer (DCR) was designed to investigate the viscoelastic characteristic of polypropylene melt. The pulsatile flow of polymer melt could be got by parallel superposition of oscillation on steady shear flow in this novel DCR. The vibration frequency-dependent behavior of the phase angle and the shear stress vs. shear rate loops can be determined during pulsatile extruding processing. With the increase of the vibration frequency, the elastic characteristic of PP melt becomes more apparent.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net