SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Foaming of Nanoclay Reinforced PS/PMMA Polymer Blends
Xiangmin Han, L. James Lee, Hanxiong Huang, May 2005

Nanoclay reinforced polymer blends exhibit high potential as a new material for CO2 foaming because they can provide higher CO2 solubility, lower gas diffusivity, and better mechanical properties than foams made of homopolymers. In this paper, a polystyrene (PS)/poly(methyl methacrylate) (PMMA)/nanoclay blend was selected to study the relationship among blend morphology, nanoparticle distribution, and foam structure. PMMA serves as the dispersed domain in PS. Blends with different morphology were obtained by changing the nanoclay content and the screw configuration, which were then foamed by using CO2 in a batch system. Effects of nanoclay content on the blendmorphology, rheological properties, and foam morphology were studied. It is found that the highest foam nucleation efficiency appears at the interface of PS/PMMA/nanoclay.

Analysis of Pressure-Driven Disk-Flow Rheometry
Zhe Xie, Donggang Yao, Qian Zou, May 2005

In the pressure-driven disk-flow (PDDF) rheometry, the liquid is pressurized in the center of a pair of parallel disks and flows outward in the radial direction. While an analytical solution to the viscosity can be readily derived for Newtonian liquids, corrections need to be made to determine the actual relation between shear stress and shear rate for non-Newtonian liquids. A data analysis procedure with corrections similar to the Rabinowitsch-Weissenberg correction in capillaryrheometry was developed for the PDDF rheometry, resulting in a relation that correlate wall shear stress with wall shear rate at the exit of the disk flow. Computer experiments with a known viscosity model of a non-Newtonian liquid were carried out using Fluent® to generate data points for the pressure-driven disk flow. The data analysis procedure for PDDF rheometry was implemented and was able to extract the shear-rate-dependent viscosity from the raw data.

Effect of Heat Sealing Temperature on the Fracture Aspects of OPP/CPP Seal.
U.S. Ishiaku, Yasuo Hashimoto, Tsujii Tetsuya, Hiroyuki Hamada, May 2005

Failure criteria of the heat sealed part of oriented polypropylene (OPP) and cast polypropylene (CPP) heat seals made by an impulse type heat-sealing machine were investigated. Circular notches and pre-cracks were introduced to direct failure to specific areas such as inside the seal, at the border or the unsealed part. The notched strength as a function of heat-sealing temperature revealed that the seals were stronger in the transverse direction (TD) as compared to the machine direction (MD). Tensile failure that occurred inside the heat seal is more sensitive to sealing temperature while that at the unsealed part is immune. The stress intensity factor (K1) is generally higher along TD. Within the seal, three distinct zones could be identified with increasing temperature. For failure at the unsealed area, the value of K1 was constant irrespective of sealing temperature along the MD while the trend along the TD is similar to that within the heat seal. The weakest part was identified as the immediate neighborhood outside the heat seal.

Distribution of a Minor Solid Constituent in a Transfer Molded E – Pad Leadframe Package
Yue Huang, David Bigio, Michael Pecht, May 2005

This study investigates the spatial distribution of a minor particulate constituent in a transfer molded exposed die paddle (e-pad) leadframe microcircuit package. Packages were polished at three depths parallel to its top surface. Levels 1 and 2 are above the die and leadframe while level 3 is just below the top surface of the die and leadframe. The distribution of area fraction and size of the particulate was analyzed for each level and with respect to the distance from the gate using micro-photographic image analysis. A non-uniform distribution of the particulate material for both particle size and location is evident, and its relations with gate, die and leadframe are interpreted. ANOVA tests were conducted to assess the statistical significance of the variations.

Combinatorial Compounding and High Throughput Screening
M. Moneke, M. Rehahn, May 2005

To develop compounds with specific properties and to take full advantage of today’s variety of additives more efficient material development processes are needed. A new method is combinatorial compounding. Based on a twin screw extruder and a following flat film extrusion line compounds are produced and tested with a high frequency. For this the process control has to be altered so that gravimetric feeders continuously change the amount of additives. The composition and parameters specific for the optimization problem at hand are monitored. This information together with Measures of Significance (MOS; parameters or combinations of parameters) is fed into a data base which spans the parameter space. Algorithms known from combinatorial material research help to find a predefined optimum. The optimal compound can than be further tested.In this contribution the equipment, the process and the data management are introduced.

Fibril Formation of Thermotropic Liquid Crystal Polymer and Polyester Blends by Controlling Viscosity Ratio
Jun Young KIM, Seong Hun KIM, May 2005

Polymer blends based on poly(ethylene 2,6-naphthalate) (PEN) and poly(ethylene terephthalate) (PET) reinforced with a thermotropic liquid crystal polymer (TLCP) were prepared by a melt blending process. The TLCP component acts as a nucleating agent in the TLCP/polyester blends, thereby enhancing the crystallization of the polyester matrix through heterogeneous nucleation. The lower value of the structural viscosity index for the TLCP/polyester blends was attributed to the formation of TLCP fibrillar structures with elongated fibrils in the polyester matrix, resulting in better spinnabiliy. The higher intrinsic viscosity of the polymer matrix, higher shear rate, and lower viscosity ratio may favor TLCP fibril formation in the polyester matrix.

Biaxially Oriented Polypropylene Pipes
Maria Soliman, Patrick Voets, Ralf Kleppinger, Ian Ward, May 2005

Since many years, polypropylenes with low amounts of ethylene comonomers (PPR) are used for production of hot-water pipes in sanitary applications. In this contribution we report on a new route for obtaining “biaxially” oriented PPR pipes via a die-drawing process previously developed at Leeds University. This results in a significant improvement of long-term stability as well as hydrostatic pressure and impact resistance, compared to PPR pipes produced under standard extrusion conditions. This unique behavior originates from a non-uniform orientation distribution throughout the pipe cross section, which has been analyzed using X-ray microdiffraction.

Improving Dimensional Stability in PP without Sacrificing the Property Balance
Maria Soliman, François Essers, John Cremers, May 2005

The importance of dimensional stability for the automotive industry is evident from the fact that a car consists of a combination of metal, fiber reinforced composites and polymer blends. Metals have a coefficient of linear, thermal expansion (CLTE) in the order of 10-20 x 10-6 /K.The standard way to match typical requirements is the addition of fillers; this leads to an increase in weight and a different property balance concerning E-modulus and impact strength. In contrast to this we describe a new concept to combine low weight, good mechanical properties and dimensional stability. The basis of a changing dimensional stability lies in the surface morphology and is achieved by introducing a layered rubber-PP structure. This change in morphology reduces the expansion coefficients in the important length and width direction, which is accompanied by a slight increase of CLTE in the direction of the thickness. Our goal is, to achieve a material with a very good dimensional stability without loosing primary properties.

Long-Term Tensile and Compressive Behavior of Polymer Foams
A. Kraatz, M. Moneke, V. Kolupaev, May 2005

Polymeric rigid foams are increasingly used for highly loaded mechanical applications, e.g. as core in foam sandwich constructions in aircraft or automotive parts. So far the mechanical behavior of rigid foams is not determined precisely. Therefore the core of sandwich constructions is not taken into consideration for the mechanical design. This leads to oversizing and extended material consumption. This paper presents experimental results of long-term tests and indicates a theory to take into account the difference of tensile and compressive behavior of foams. This theory is based on a strength hypothesis and can be implemented in commercial finite-element programs. The proposed method leads to an improved mechanical design and as a consequence a reduction of mass of construction parts.

Removing the Mystery from Rotomoulding: New Insights into the Physiochemical Processes Involved Leading to Improved Quality Control
NG Henwood, MA Roberts, A Quaratino, S Collins, P Sharifi, C Liauw, GC Lees, May 2005

This paper presents a first report from a longterm collaborative programme between Matrix Polymers Limited and the Manchester Metropolitan University. The purpose of the programme is to examine physiochemical mechanisms of the rotational moulding process using a variety of analytical techniques.The effect on the performance of polyethylene (PE) caused by variation of the rotomoulding cooking cycle is investigated using a combination of infrared spectroscopy and melt rheology. Analytical results are correlated with large scale performance characteristics, measured by established industrial assessment techniques such as low temperature impact strength, brittleness, part density development and yellowness index.

Notched Impact Strengths of Compact and Microcellular Polycarbonate
Andrzej K. Bledzki, Hendrik Kirschling, Georg Steinbichler, Peter Egger, May 2005

The notched impact strength of compact polycarbonate depends on the temperature, thickness (with a tough brittle transition at thickness increases), contribution of sharp notches (transition of the flat tension to the flat stretching condition) and processing parameters.Microcellular polycarbonate foams produced by injection molding process using physical blowing agent (MuCell) with or without gas counterpressure process, shows significantly higher notched impact strength then compact polycarbonate, if the compact polycarbonate is brittle under the same test parameters. When the compact polycarbonate breaks toughly, the notched impact strength of microcellular foams is always significantly lower. Therefore it is very important to pay attention to the test parameters by comparing the notched impact strength between compact and microcellular polycarbonate.

Monte Carlo Modelling of LDPE on a Molecular Level; Relating Molecular Structure to Polymer Properties
Peter Neuteboom, Sjoerd van der Hem, May 2005

Although LDPE is amongst the oldest polymers, it is also the polymer with one of the most complex molecular structures. Using a Monte Carlo method a model has been developed with which it is possible to calculate the detailed structure of each and every single molecule. The molecular characteristics have been related to analytical methods like GPC, NMR and DMS. Moreover the effects of the molecular structure on the polymer properties have been studied. The model has proven to be a valuable tool in product and process development.

The Analysis of the Optimal Parameter Design of Led Light Guide Panel’s Part
Yao-Tsung Lin, Chung-Chih Lin, Feng-Yang Xie, May 2005

In this paper, we will demonstrate the analysis of molding process of Light-Emitting Diode (LED) Light Guide Panel’s part. The purpose of this work is to investigate the influence of design parameters such as gate location, gate dimension, cooling channel layout etc. As the thickness of this part becomes thinner, the distortion of that happens more frequently. The focus of the Light Guide Panel is changed due to dimensional distortion of this part. It creates an optical problem. The comparisons of different gate designs and cooling channel layouts are discussed in order to find the optimal parameters. The study finds that the warpage of this product is influenced apparently by cooling process. The analysis finds out that the important design parameters which influence the melt-flow pattern most are gate location and dimension.

Molecular Dynamics Simulations of Mechanical Properties and Behavior of the Lamellar Structure in Semi-Crystalline Polymers
Ricardo Simões, Witold Brostow, Gustavo R. Dias, Júlio C. Viana, António M. Cunha, May 2005

Computer simulations have been employed to investigate the properties and behavior of the lamellar region in semi-crystalline polymeric materials. For this, the molecular dynamics method was used in conjunction with the statistical segment model. Through computer simulations, the response of the macromolecular chains under an external load was characterized along time.These simulations provide pertinent information about structure-properties relationships, and will eventually lead to a better understanding of the underlying phenomena.

The Role of Numerical Injection Molding Simulation in Predicting Mechanical Properties
Rolf Koster, May 2005

Research objective is to establish manufacturing-related design rules and procedures for engineering design of injection molded thermoplastics parts, and to investigate application of novel materials to support development of design for sustainability. Outputs of numerical injection molding simulations have been compared with tensile and tensile-impact test results for different geometry-material combinations. Combination with simulation results on thick-walled parts reported earlier has led to a systematic with predictive capability of simulation outputs for differences in mechanical performance.

Vibration Welding Non-Planar Surfaces
P.J. Bates, X.Y. Dai, C-Y. Wu, May 2005

This study examines the vibration welding of mating plates whose faying surface lies in two distinct planes. Plates containing both ‘horizontal’ and ‘angled’ surfaces were injection molded using a glass-fiber-reinforced nylon 6. These plates were then vibration welded to create a butt-welded assembly containing two non-parallel weldlines. The tensile weldline strengths were measured at different locations along the weld. Weld pressure, vibration direction with respect to the plate axis and the geometry of the ‘angled’ section were all observed to have significant effects on weld strength.

Computational Techniques for Benchmarking OCF Cell Structures and Textures
Ricardo Simões, Aster De Schrijver, May 2005

One of the main challenges faced by the one-component foam (OCF) industry is finding affordable (a) quantitative measuring methods for the cell structures and textures influencing the physical properties of the foams, as well as (b) standard testing procedures to do it.In this paper, a novel computer-assisted technique for characterizing and benchmarking cell structures of OCF systems is presented. This technique couples very simple and cost-effective image acquisition procedures with computer algorithms developed specifically for OCF foam texture and cell structure analysis.The ultimate target of the proposed technique and methodology is to establish a standard for benchmarking and characterization of OCF foam textures and cell structures.

Experimental Data and Constitutive Modeling of Elastomers
Jörgen S. Bergström, May 2005

The mechanical behavior of elastomers is characterized by Mullins effect, rate- and temperature-dependence, and a non-linear stress-strain response. These experimental features are well recognized and important, and have been extensively studied for more than 50 years. The understanding of the micromechanisms controlling the macroscopic mechanical behavior is much more recent, and advanced modeling tools allowing for accurate predictions of arbitrary deformation histories have only started to become available during the last few years. In this project we have examined the current state of the art in finite element modeling of elastomers. The predictive capabilities of modern constitutive theories are exemplified by comparing model predictions with experimental data for filled chloroprene rubber.

The Effect of Pigmentation on Crystal Growth during Rotomoulding
M.P. McCourt, G.M. McNally, M.P. Kearns, D.C. McConnell, M. Martinez-Cobler, W.R. Murphy, May 2005

This paper studies the effect of pigment concentration and pigmentation blending methods on the impact properties, crystallinity and morphology of rotationally moulded polyethylene parts. Hot stage microscopy, differential scanning calorimetry and dynamic mechanical thermal analysis techniques were used. It was observed that the pigmentation blending method used and level of pigmentation had only limited effect on the extent of crystallinity. The reduction in impact performance for turboblended pigmented samples was due to the relatively poor distributive and dispersive mixing of the pigment within the polymer matrix.

Development and Characterization of Thermoplastic Biodegradable Nanocomposites
Lluís Cabedo, José L. Feijoo, José Ma. Lagarón, Juan J. Saura, Enrique Giménez, May 2005

Biodegradable blends of amorphous Poly(lactic acid) (PLA) and polycaprolactone (PCL) have been developed by melt blending. The morphology of these materials was characterized by means of WAXD and TEM, showing that silicate layers of the kaolinite (chemically modified kaolinite) were intercalated and evenly distributed within the biodegradable matrix. Mechanical, thermal and gas barrier properties of the different blends and nanocomposites were studied and the effect of clay addition on the above-mentioned properties was evaluated.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net