SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Characterization of Polyethylene Resistance to Slow Crack Growth
A. Chudnovsky, Y. Shulkin, Z. Zhou, S. Wu, K. Sehanobish, May 2004

It has been well recognized that slow crack growth in polyethylene leading to long-term brittle failure is associated with behavior of a process (craze) zone in front of the crack tip. The concept of crack layer (CL) as a system of strongly interacting crack and process zone (PZ) was introduced and analyzed in a number of publications by Chudnovsky with co-authors. The present paper is an extension of the model, which includes: (i) a new approach to determination of PZ size that accounts for stress relaxation along of the PZ boundary and (ii) evaluation of PZ lifetime under variable stress at each stage of CL growth. Analysis of stresses and strains in a vicinity of the crack layer is based on (i) the compatibility condition between bulk polyethylene and PZ material along the PZ boundary and (ii) determination of material elastic and creep characteristics obtained from tests on an original polyethylene and its craze modification. A stepwise process of slow fracture propagation is considered. The time to ultimate failure is evaluated as the duration of slow CL growth from load application to ultimate instability. An experimental procedure to rank various polyethylenes with respect to resistance to fracture propagation (toughness) is discussed.

An Integrated Intelligent Total Quality Management System for the Diagnosis of Tires’ and Elastomers’ Defects during Manufacturing and Use
M. Hassan, A.B. Khairy, S.M. Fayommi, M.G. Abou-Ali, May 2004

Defect diagnosis of tires during manufacturing and service is one of the very complicated issues in dealing with the tire manufacture. This is due to the big number of raw materials and processing steps involved in the manufacturing of a tire. Each raw material and process quality parameter is affecting the final quality of the tire. The manufacturing history data of that particular tire is essential, with the raw materials inspection results, as the starting point, and going through all manufacturing steps, to the final inspection results and failure mode in service. This study presents a TIRE Defects Diagnostic eXpert system, which we called (TIREDDX) as a part of an integrated TQM system that can be applied to achieve an effective diagnostic procedure for tires and elastomers defects, which may cause a company a lot of money, effort and time to resolve it.

Oxidative Resistance of Sulfone Polymers to Chlorinated Potable Water
S. Chung, J. Couch, J.D. Kim, K. Oliphant, P. Vibien, J. Hung, M. Ratnam, W. Looney, May 2004

Environmental factors are known to significantly impact the oxidative failure mechanism of plastics. The chlorine present in potable water as a disinfectant is an oxidant and has been shown to be able to significantly affect the failure mechanism of materials in potable water applications. In this paper, the impact of chlorinated potable water on four polysulfone materials was examined (PSU, PPSU/PSU blend, PPSU and glass-reinforced PSU). The materials were tested in the form of standard commercial insert fittings for plastic piping applications and exposed to continuously flowing aggressive chlorinated potable water at elevated temperature and pressure. The exposure period was chosen as twice the lifetime of the adjoining cross-linked polyethylene pipe (PEX) at the test condition. The exposure is shown not to have impacted the mechanical strength of the fittings when compared to the application pipe. Degradation, attributed to oxidation, of the exposed surface was observed. The morphological and chemical changes were examined using SEM, EDX and EDS. The differences between materials are presented. All materials were found to have excellent oxidative resistance to the chlorinated potable water at the tested condition. The PPSU material is seen to be the most resistant while the PSU materials the least resistant. The PPSU/PSU blend resistance was seen to be between that of the PPSU and PSU materials.

New Thermoplastic Vulcanizates (TPVs) with Improved UV Resistance and Fogging Properties
Yundong Wang, Hua Cai, Ryszard Brzoskowski, May 2004

A new line of thermoplastic vulcanizates (5700B) has been developed by DSM Thermoplastic Elastomers for automotive sealing system applications as well as other applications where UV resistance is critical. This new line of products, consisting of many different grades with hardness ranging from 58 shore A to 40 shore D in black color, shows superior processability, consistent quality, and balanced properties meeting automotive material and performance specifications. In this paper, we will discuss some of the features associated with this new line of products.

Phase Reinforcement Effects in TPV Nanocomposites
Hemant Thakkar, Keun Yong Lee, Lloyd A. Goettler, May 2004

Thermoplastic vulcanizates (TPV’s) have been extensively studied and gained wide acceptance because of their rubber-like properties and thermoplastic processability. Polymer / layered silicate nanocomposites of various types have similarly received much attention as promising high performance materials. Combining these two complementary technologies to form a TPV nanocomposite generates interesting properties that significantly depend on the phase location of the silicate nanoclay reinforcement – whether it lies in the dispersed rubber phase or in the continuous plastic matrix.Our objective is to selectively reinforce either the plastic phase or the rubber phase in some typical TPV’s and observe the distinctive effect of reinforcement partitioning on mechanical and rheological properties.

Application of Time-Temperature Superposition to Stress Relaxation in Elastomers
Ward Narhi, Shaival Mehta, May 2004

Williams, Landel and Ferry developed a method of shifting data horizontally along the log time scale by amounts related to a temperature difference to obtain long term properties of the material without requiring testing to those long times. This paper explores the use of the WLF Method to characterize the long-term stress relaxation of thermoplastic vulcanizates. Stress relaxation data is used to predict long-term sealability of these materials in applications such as automotive weatherseals, pipeseals, glazing seals, etc. A master curve is defined for various elastomers and a comparison is made to previous WLF models and to current data to determine its accuracy. The use of this method can allow the prediction of long-term stress relaxation obviating the requirement to submit materials for lengthy and costly testing.

Long-Term Aging of New Heat and Oil Resistant Thermoplastic Vulcanizates (TPV)
Brian J. Cail, Robert D. DeMarco, May 2004

Thermoplastic vulcanizates (TPVs) afford many advantages in terms of part design, processing, and part cost. Due to temperature and oil resistance limitations, current generation TPVs (e.g., EPDM//polypropylene) and copolyesters have had only limited applicability in underhood automotive applications.A new class of heat- and oil-resistant TPVs has been recently introduced1. A representative polyacrylate / /polyamide TPV from this class will be shown to exhibit superior physical property retention after 2000h air and oil (SF105) exposure to temperatures between 100° and 150°C.

New Flame Retardant TPVs for Electrical Applications
George A. Anthony, Joseph Pfeiffer, May 2004

Thermoplastic vulcanizates (TPVs) have long established themselves as cost effective and durable alternatives to many traditional elastomers such as EPDM rubber and thermoplastic urethanes (TPUs). Cost effectiveness comes from lower specific gravity, while durability comes from the cross-linking of the thermoset rubber. Newly developed TPVs further expand this envelope. This paper compares physical properties, including abrasion resistance, of these newly introduced TPVs, to both ester and ether based TPUs. Data shows these TPVs are equal to or better than the TPUs in flame retardancy and abrasion resistance while at a lower final volumetric and weight cost.

Versatile New Soft Polyolefin for Compounding with Other Soft Thermoplastics Resins or as a TPV Base Resin
L. Struzik, D. Berta, G. Pellegatti, May 2004

A high level of bipolymer “in-situ” polymerized within a polypropylene random copolymer matrix was synthesized and utilized to achieve interesting elastomeric properties and softness. This versatile new Soft Thermoplastic (STP) is crosslinkable, compatible with other non-olefin polymers and free flowing. Moreover, it is usable with all main compounding technologies, capable of improving properties with a cost-effective solution. Physical-Mechanical characterization and use of this new STP designed as a blend component for product development by compounders are reviewed. Composition properties, in which this grade plays a role as either a component with other polymers or as a base for more elastic thermoplastic vulcanizes, are also presented.

Future Directions for Plastics Engineering Education: Technical, Business, and Human Concerns
David Kazmer, Stephen Orroth, Nick Schott, May 2004

Engineering practice in the plastics industry typically requires knowledge of materials science, mechanical design, and manufacturing processes. However, the traditional academic focus on these technical fundamentals may not be sufficient to satisfy recent trends in industry practice. This paper reflects on the current state of plastics engineering education and proactively suggests changes in the curriculum to address the needs of the global system of the plastics industry through the three domains of technical, business, and human concerns.

Educating Industrial Design Engineers in Failure Awareness
Jan L. Spoormaker, May 2004

Industrial designers have problems imagining how their designed plastic products might fail.The paper illustrates how our students are educated about the specific structure related properties that might cause failures.A specific course about designing for reliability of plastic products is outlined. Case studies showing failed products are important.Students must be aware of failure causes like: stress concentrations, low mass and/or mould temperatures, highly stressed weld lines, faulty ribbing and incorrect joining.The course deals also with typical failure mechanisms of plastics like: creep and stress relaxation, stable crack extension, chemical attack and environmental stress - cracking.

Improved Chlorinated Paraffin Secondary Plasticizer Compositions
Michael R. Jakupca, Mark E. Harr, Tom Jennings, May 2004

Chlorinated paraffins are the world's lowest cost secondary plasticizer for flame retardant flexible PVC compounds. Significant quantities are used throughout the world, primarily outside of the United States. In the U.S. the use of chlorinated paraffins has lagged behind the use of phosphate esters in flame retardant flexible PVC. This is principally due to concerns and misconceptions regarding the heat stability and compatibility of chlorinated paraffins. This paper documents the recent progress that has been made in the field of chlorinated paraffin secondary plasticizers with regard to overall economics, heat stability and compatibility in flexible PVC FR compounds.

An Innovative Plasticizer for Sensitive Applications
Brian L. Wadey, May 2004

With the increased critical discussions about potential toxicological effects of phthalates in the midnineties, BASF took a proactive approach to search for alternatives. We are convinced that phthalate plasticizers are suitable for many PVC applications. However, in exposure sensitive applications, such as medical and toys, we felt there was a need to develop a new plasticizer.Different structural classes that could be used as plasticizers for PVC were examined. Based on our knowledge of the physico-chemical requirements and our experience in applications technology, the most promising candidates were selected for further testing. From these results, BASF commercialized Hexamoll® DINCH, the ester of cyclohexanedicarboxilic acid and C-9 alcohols.In a paper presented at Vinyltec in Chicago last year, BASF reviewed the activities of the FDA’s safety assessment of DEHP. The Vinyltec paper went on to discuss the toxicological database and profile for Hexamoll® DINCH. It recommended the use of this new class of plasticizers in exposure sensitive FPVC applications such as medical, toys, packaging and gloves.This paper evaluates the performance of the ester of cyclohexanedicarboxilic acid and C-9 alcohols in flexible PVC and plastisol formulations and compares it to a semi-linear diisononyl phthalate based compound and plastisol. An evaluation comparing DINCH to acetyl tri-n-butyl citrate is ongoing and will be reported at ANTEC.

Improved Heat Distortion Modifier for PVC and ABS
Larry B. Simmons, May 2004

Through the use of Design of Experiments (DOE), an improved, more efficient heat modifier was evaluated and compared to products commercially available. Experimental results indicate the improved modifier is more efficient and can be used at reduced loading levels over previous modifiers. This modifier performs well in polyvinyl chloride (PVC) and acrylonitrile-butadiene-styrene (ABS) polymer systems. The incorporation of this modifier into these polymer systems can introduce cost savings to the compounder/formulator while potentially opening doors for the use of these polymers in applications where heat performance was previously a limiting factor.

Adding Value to PVC Formulations with Ester Lubricants and Fine Calcium Carbonate
Henry E. Wiebking, Robert A. Lindner, May 2004

The PVC formulator is constantly challenged to improve performance while lowering cost. This paper reports on a laboratory project where three lubricant systems and three calcium carbonate products were evaluated.A generic rigid PVC formulation, with 1phr TiO2, containing paraffin wax and a one-micron ground calcium carbonate, was compared with formulations containing two different ester lube packages and a finer precipitated calcium carbonate. The ester lubricated, fine precipitated carbonate filled, compounds demonstrated improved impact performance, especially at the lower test temperatures.

MBS and CPE in Rigid PVC Pipe Formulations
Mike Vanek, May 2004

The impact behavior of poly(vinyl chloride) (PVC) pipe formulations containing either: chlorinated polyethylenes (CPEs) , impact-grade methyl methacrylate butadiene styrene (MBS) , MBS /CPE mixture or an acrylic core-shell impact modifier were evaluated using an instrumented impact tester. The lubricants were adjusted for each modifier to yield similar fusion times. Compounds were extruded on a laboratory-scale twin screw extruder and impact tested at low temperature [- 10°C] conditions. Fusion bowl stability testing was also performed on each blend. The results showed a 50-50% MBS/CPE blend had improved thermal stability and lower extrusion pressures than pure MBS, while retaining good output and comparable impact performance to pure MBS, CPE or acrylic formulations.

Quasi-Brittle-To-Ductile Transition in Impact Modified Poly(Vinyl Chloride)
J. Yu, A. Hiltner, E. Baer, May 2004

The toughness of impact modified poly(vinyl chloride) (PVC) compounds was examined using a modified Charpy test. Increasing impact speed resulted in a quasi-brittle-to-ductile transition in all PVC compounds. In the quasi-brittle region, lower molecular weight PVC modified with 10 phr chlorinated polyethylene (CPE) exhibited a craze-like damage zone that could be described by a modified Dugdale model. Lower molecular weight PVC modified with 10 phr methylmethacrylatebutadiene-- styrene (MBS) impact modifier also exhibited a craze zone and the same intrinsic crazing energy. However, the toughness of the craze and the resistance to fracture depended on the type of impact modifier. Increasing molecular weight of the PVC resin resulted in a more complex damage zone that was not amendable to the Dugdale analysis.

Stepwise Fatigue Crack Propagation in Poly(Vinyl Chloride)
T.E. Bernal-Lara, Y. Hu, A. Hiltner, E. Baer, May 2004

The kinetics and mechanism of fatigue crack growth in poly(vinyl chloride) (PVC) compounds of different molecular weight were studied. The fatigue crack propagation rate of all the PVC compounds followed the Paris law: da/dt=AF?KI 2.7. Fatigue crack propagation rate, as reflected by the pre-factor AF in the Paris law, was highly dependent on molecular weight of the resin, strain rate and temperature. A stepwise mechanism of fatigue crack propagation was observed in all the PVC compounds. Steps were formed by discontinuous growth of the crack through a single craze in the shape of a narrow strip. Step length and lifetime were used to characterize crack propagation.

PVC Process Window as a Function of Lubricant Formulation
Rob Martin, May 2004

Extrusion responses including impact resistance (mean failure energy,MFE) of the extrudate as a function of extrusion conditions and ester lubricant formulation were evaluated. Mathematical models were calculated using experimental design software facilitating prediction of MFE and melt temperature responses for hypothetical extrusion conditions and lubricant packages. Extruder response predictions are then used to define a process window for hypothetical lubricant formulations where two or more extrusion responses must be balanced. Paraffin, ethylene bisstearamide, and ester based systems are compared.

The Effects of Process Temperature on the Weathering Performance of RPVC
Burch E. Zehner, Jeff Hartley, May 2004

Elevated process temperatures can accompany current high extrusion rates of rigid poly (vinyl chloride). Various colored weatherable siding compounds were studied in the processing range of 193 C (380 F) to 227 C (440 F). The extruded compounds showed only minor color shifts due to increased melt temperatures. Outdoor exposure through 4 years in Arizona, Florida, and Ohio demonstrated typical color change, but did not exhibit significant color shift relating to the initial processing temperatures. The extruded samples from elevated melt temperatures did demonstrate reduced impact strengths prior to outdoor exposure. Florida and Ohio exposed samples lost impact strength throughout the 5 years of exposure, with the higher temperature processed samples continuing to show lower impacts over time.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net