SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

High Stereoregular or Elastomeric Polyolefins Promoted by Rac- or Chiral Octahedral Complexes
Moris S. Eisen, May 1999

This presentation will report the synthesis and activity, as precatalysts for the stereoregular polymerization of propylene, of four racemic mixtures of bis(benzamidinate) group-4complexes, cis-[p-R'C6H4C(NR)2]2MX2 (R' = CH3, R = SiMe3, M =Ti, X = Cl (1); R' = CH3, R = SiMe3, M = Zr, X = Cl (2); R' = H, R = i-pr, M = Zr, X = Cl (3); R' = CH3, R =SiMe3, M = Zr, X = CH3 (4)). The hydrocarbyl complex 4 was prepared by the alkylation of the corresponding complex 2 with MeLi•LiBr and characterized by standard techniques including X-ray diffraction. Reaction of complex 4 with B(C6F5) or MAO (MAO = methylalumoxane) results in the formation of a cationic" intermediate complex which rapidly reacts with the incoming monomer. These complexes catalyze the stereoregular polymerization of propylene in CH2Cl2 producing polypropylene with very large isotacticities (mmmm % = ~95-98) high melting points (140-154¡C) and similar molecular weights as compared with cyclopentadienylcomplexes. The isotacticities of the polymers can be modulated by pressure and in some cases by the size of the metal center. In addition the presentation will report the synthesis and catalytic activity of new chiral C1 and C3 precatalysts. The chiral lithium (-) trimethylsilylmyrtanyl amide reacts with benzonitrile yielding the chiral benzamidinate lithium ligand ([N-trimethylsilyl][N'-myrtanyl] benzamidinate Li•TMEDA (TMEDA =tetramethylethylenediamine) [N(R*)-C-N]Li. Equimolar addition of [N(R*)-C-N]Li to TiCl4 in THF yields [N(R*)-C-N]TiCl3•THF (5). An X-ray study of 5 shows that it has an octahedral structure with the oxygen atom and one chlorine atom at the apicalpositions. [N(R*)-C-N]3ZrCl•toluene (6) can be prepared in a manner related to that employed to synthesize 5. An X-ray study of 2 shows that it has a capped octahedral geometry with the three trimethylsilyl groups in a cis position with respect to the chlorineatom and the other three myrtanyl groups arranged on the opposite side ofthe chlorin"

High Stereoregular or Elastomeric Polyolefins Promoted by Rac- or Chiral Octahedral Complexes
Moris S. Eisen, May 1999

This presentation will report the synthesis and activity, as precatalysts for the stereoregular polymerization of propylene, of four racemic mixtures of bis(benzamidinate) group-4complexes, cis-[p-R'C6H4C(NR)2]2MX2 (R' = CH3, R = SiMe3, M =Ti, X = Cl (1); R' = CH3, R = SiMe3, M = Zr, X = Cl (2); R' = H, R = i-pr, M = Zr, X = Cl (3); R' = CH3, R =SiMe3, M = Zr, X = CH3 (4)). The hydrocarbyl complex 4 was prepared by the alkylation of the corresponding complex 2 with MeLi•LiBr and characterized by standard techniques including X-ray diffraction. Reaction of complex 4 with B(C6F5) or MAO (MAO = methylalumoxane) results in the formation of a cationic" intermediate complex which rapidly reacts with the incoming monomer. These complexes catalyze the stereoregular polymerization of propylene in CH2Cl2 and in some cases by the size of the metal center. In addition the presentation will report the synthesis and catalytic activity of new chiral C1 and C3 precatalysts. The chiral lithium (-) trimethylsilylmyrtanyl amide reacts with benzonitrile yielding the chiral benzamidinate lithium ligand ([N-trimethylsilyl][N'-myrtanyl] benzamidinate Li•TMEDA (TMEDA =tetramethylethylenediamine) [N(R*)-C-N]Li. Equimolar addition of [N(R*)-C-N]Li to TiCl4 in THF yields [N(R*)-C-N]TiCl3•THF (5). An X-ray study of 5 shows that it has an octahedral structure with the oxygen atom and one chlorine atom at the apicalpositions. [N(R*)-C-N]3ZrCl•toluene (6) can be prepared in a manner related to that employed to synthesize 5. An X-ray stu producing polypropylene with very large isotacticities (mmmm % = ~95-98)high melting points (140-154¡C) and similar molecular weights as compared with cyclopentadienylcomplexes. The isotacticities of the polymers can be modulated by pressure dy of 2 shows that it has a capped octahedral geometry with the three trimethylsilyl groups in a cis position with respect to the chlorineatom and the other three myrtanyl groups arranged on the opposite side ofthe chlorin"

Concentration and Temperature Effects on the Flow of Polymeric Suspensions
Faezeh Soltani, Ulku Yilmazer, May 1999

The flow behavior of concentrated suspensions consisting of a Newtonian matrix (Hydroxyl-terminated-polybutadiene) and aluminum powder was analyzed using a parallel disk rheometer. The effects of the solid content and temperature on the viscosity and the slip at the wall behavior were investigated. Suspensions exhibited slip at the wall at concentrations close to their maximum packing fraction. The slip velocity increased linearly with the shear stress, and at constant shear stress the slip velocity increased with increasing temperature. Suspensions with more than 40% filler content by volume showed shear thinning at all of the applied temperatures.

Rapid Tooling for Injection Moulding Using Fused Deposition Modelling
S.H. Masood, W.Q. Song, J.H. Hodgkin, C. Friedl, May 1999

This paper presents the results of the research work on the development of a new metal-polymer composite material for the Fused Deposition Modelling (FDM) rapid prototyping system and the use of this material in fabricating injection moulding dies and inserts directly on the FDM system. The feed stock filaments of these composites have been successfully produced and used in the FDM system to produce test parts and inserts for the injection moulding dies. The inserts have been used in the injection moulding machine to successfully produce plastic parts in low density polyethylene and other thermoplastics. The work is a unique development in reducing the cost and time for making injection moulding dies.

Activation Energies of Polymer Degradation
Samuel Ding, Michael T.K. Ling, Atul Khare, Lecon Woo, May 1999

The degradation kinetics of a series of polymers was studied. The Arrhenius activation energy was used as the parameter to follow the rate dependence with temperature. For most systems, it was evident that the activation energies increase monotonically with temperature. This finding explains the frequent observation that kinetic parameters obtained at high temperatures often lead to grossly optimistic estimates of shelf-life at ambient. The activation energies of polypropylene from the surface embrittlement processes were also found to have a striking similarity to the thermal processes, with nearly identical activation energies at the same temperature. This observation could lead to broader applications and further understandings on the polymer degradation

High Temperature Flexible Polyolefins: A User's Perspective
Atul Khare, Samuel Y. Ding, Michael T.K. Ling, L. Woo, May 1999

In the last few years, we have witnessed a fundamental material revolution not seen in the last half century of polymer history. The so called single site catalyst, many of which metallocene compounds, are creating novel compositions and properties unheard of only a few years ago. In the medical plastics and packaging markets, the achievement of cost performance similar to that of the flexible PVC has always been an technology challenge. With the metallocene catalyst, unprecedented co-monomer incorporation can be achieved with high homogeneity, ultra low-density poly-ethylenes becomes widely available. However, with the steady reduction in crystallinity and modulus, the melting point also decreased monotonically. Thus, materials with both the flexibility and high temperature capabilities are still very rare. More recently, several developments on propylene based elastomers have been discussed. Combining the high melting point of isotactic polypropylene with a suitable elastomeric block structure appears to be very promising in achieving these properties. In this paper we will present our actual experiences in utilizing these new materials in medical application.

Shelf Life Failure Prediction Considerations for Irradiated Polypropylene Medical Devices
Michael T.K. Ling, Samuel Y. Ding, Atul Khare, L. Woo, May 1999

In a standard method for assessing polypropylene syringe durability, the maximum bend angle before failure was used as a measure of the device ductility. Since the ductility of polypropylene is heavily dependent on deformation rate, choosing a realistic testing rate is critical to predict its shelf life accurately. In addition, irradiated polypropylenes undergo degradation when free radicals deposited by the radiation react with atmospheric oxygen to form a brittle surface layer. This brittle layer can create sharp notches and magnify the local strain rates causing the entire device to fail. Therefore, it is important to incorporate the effect of strain rate and degraded surface in the shelf life prediction of the polypropylene devices. For thin film applications, we found that oxidative induction time (OIT) test combined with oven testing can be used to predict its shelf life quite satisfactorily.

Radiation Resistance of Multilayer Films by Instrumented Impact Testing
Robert Wojnarowski, Michael T.K. Ling, Atul Khare, L. Woo, May 1999

Olefinic multi-layer films are becoming increasingly cost-effective in the medical industry for a wide variety of applications. And terminal sterilization by gamma or electron beam is also becoming wide spread due to its economy and simplicity. However, during the irradiation process, much of the antioxidant in the polymer can be depleted, and in the case of high glass transition (Tg) polymers like polypropylene, could lead to brittleness during the shelf life storage of the product. We have utilized an instrumented impact test where film samples' high strain rate ductility and toughness can be quantified at deep subambient temperatures. The test system was constructed using the Lab-View( instrument interface system with an personal computer as the controller. Temperature control, velocity sensing and high speed strain gage data acquisition were all handled automatically. After the impact event, data presentation, energy integration and file archiving were built into the system. Using this system, we quantified the post irradiation embrittlement behavior of a multilayer film and developed an effective impact modifier system which insured ductility retention long after irradiation at high doses.

Development of Poly(Phenylene Sulfide)/Nylon66/Glass Fiber Composites with High Elongation and Impact Strength Using EGMA
Sang Il Lee, Bo Sun Lee, Byoung Chul Chun, May 1999

In this study, the toughenning effect of Nylon66 on the PPS/glass fiber composite at various Nylon66 contents and testing temperatures was analyzed using tensile and notched Izod impact test. Also the corresponding fracture surface morphology was observed. First, compatibility of PPS with Nylon66 was examined. It was found that compatibility was low when Nylon66 was a dispersed phase. However, when PPS was a dispersed phase, increased compatibility could be observed. This tendency was similarly observed when glass fiber was added, and the overall effect was an increase of mechanical strength in terms of absolute values. Thus, when Nylon66 was a dispersed phase(minor component), negative deviation from the rule of mixtures relationship was found. In order to improve these deficiencies, compatibilizer EGMA was used. Optimum EGMA content which can improve the strain at break and impact strength was found to be between 3~5wt%.

World Volume Polymer Markets Slow
William C. Kuhlke, May 1999

This marketing paper, like the similar one last year, is being written in November 1998 for presentation in six months. During that time, a lot can happen. Therefore, this paper is being written for the SPE ANTEC preprint book, but the actual paper, come May 1999, may be significantly updated, as it was in 1998. In the next few pages, this paper will discuss some of the major factors affecting the world volume polymer industry in 1999. The major issues to be discussed include: 1. The Supply and demand for the Polymers 2. Industry restructuring 3. Globalization 4. New technology developments Overriding all of these is profitability. As of October 1998, the margins polymer producers are achieving are relatively low or non existent. Margin is defined as the difference between the selling price of the polymer and cost of the monomer. This is the amount of money the resin producer has available to make the resin, deliver it to the fabricator, pay all manufacturing costs including catalysts and additives, pay for all overheads including sales expenses, advertizing, R&D, corporate management and taxes, pay interest on all loans and hopefully return something to the stockholders. In Oct. 1998, margins for polypropylene, PVC and LLDPE producers are at very low levels. The lowest levels of this decade! To correct this situation, either monomer prices will have to continue to decline or the polymer prices will have to increase. Or the polymer producer will have to reduce costs as outlined above or by possibly combining the business with another producer or shut down the business.

The Rotational Molding of Glass Fibre Reinforced Polyethylene
Brendan G. Wisley, May 1999

The rotational molding industry has a current growth rate of 15% per annum. It is progressing rapidly from a method for manufacturing toys to a process that is considered seriously by the designer for complex load bearing articles coupled with improved mechanical properties. The main obstacle in the path to a greater growth rate lies in its dependence on polyethylene (PE) to meet the material property demands of the end user. Unfortunately PE is at the low end of the strength and stiffness bands for plastics. Increasing the thickness of products made from PE will increase the mechanical stiffness but at an additional cost which may be prohibitive. As a result, rotationally molded PE products are currently restricted to the less demanding applications. This research gives a detailed investigation into a means of reinforcing polyethylene with glass fibre and fillers. Under the best conditions, tensile strength of virgin PE will be shown to have increased by 54% and flexural modulus by 40% for a glass loading of 25% by weight.

Manufacturing Close Tolerance Medical Tubing
Charles Sparacino, May 1999

Medical tubing producers and those interested in becoming producers in today's market are faced with guarantying product reliability, material consistency, dimensional tolerance, and overall process validation. This paper will: (Refer to Item #1) • Give a brief history of medical tubing. • Describe some of the types of tubing in demand. • Outline the manufacturing process, including Bump, Bubble or tapered tubing. • Give an overall view of the extrusion line used in the manufacturing process. • Highlight the important features in the individual components of the system. • Review the various types of controls available to insure consistency in day to day operation.

Production of Electrically Conducting Plastics at Reduced Carbon Black Concentrations by Three-Dimensional Chaotic Mixing
Radu I. Danescu, David A. Zumbrunnen, May 1999

Multitudinous, continuos structures were produced in polystyrene melts from initially coarse bodies of conducting carbon black particles under three-dimensional chaotic mixing conditions. At a larger scale, such structures formed extended networks, which were captured by solidification, and rendered the composite materials electrically conducting. Micrographs showed complex structures exhibiting patterns characteristic of chaos. Electrical conductivity was achieved at carbon black loadings significantly lower than by common mixing methods and still lower than reported by the authors recently for two-dimensional chaotic mixing.

Crystallization and Microstructure of Ziegler-Natta and Metallocene Based Isotactic Polypropylenes: Simulation and Experiment
Y. Churdpunt, A.I. Isayev, May 1999

The quiescent crystallization and microstructure of Ziegler-Natta and metallocene based isotactic polypropylenes (i-PP's) of comparable molecular weights were studied. This allowed to elucidate the differences in their crystallization behavior. In particular, the isothermal and nonisothermal rate of crystallization, induction time, and spherulite growth rate were measured. These results were used to obtain the parameters for a crystallization model. The i-PP's slabs were quenched and the gapwise spherulite size distribution in the quenched slabs was measured. Simulations of the temperature field and microstructure in slabs during quenching were performed. Simulation results were found to be in good agreement with the experimental data.

Yield Maximization in Injection Molding by the Virtual Search Method
Dongzhe Yang, David Hatch, David Kazmer, Kourosh Danai, May 1999

The Virtual Search Method (VSM) is an efficient method of tuning for injection molding. The salient feature of this method is its utilization of an input-output (I-O) model as a virtual process to search for the process inputs. VSM uses learning to update the I-O model after each tuning iteration so as to improve its representation of the process. The VSM has already been tested experimentally for regulation of part dimensional and qualitative attributes. This paper focuses on extension of VSM to improving the quality of the part, where it can be used for maximization of production yield and molded part consistency. VSM's performance with two I-O models is investigated using production of optical media with six input parameters and four quality attributes.

Effects of Complexity on Tooling Cost and Time-To-Market of Plastic Injection Molded Parts
Adekunle Fagade, David Kazmer, May 1999

The injection molding process is increasingly being used in the manufacture of complex net shaped parts. Designers are taking advantage of improvements in the process and the development of engineering materials with superior properties by consolidating multiple parts and functions into single complex parts. However, the effects of complexity on tooling and manufacturing costs as well as time-to-market of injection molded parts are still largely undetermined. This paper proposes the use of the number of dimensions that are used in detailing a part as a measure of its complexity. The metric was tested with empirical data and found to correlate well with mold cost and to a lesser extent with tooling lead-time.

Shrinkage Study of Thermoformed Parts
Haihong Xu, John Wysocki, David Kazmer, Paul Bristow, Bernard Landa, Joe Riello, Charlie Messina, Ramesh Marrey, May 1999

Most thermoforming product development processes rely on costly and time consuming forming trials to determine adequacy of the mold and process. This paper describes the predictive capabilities, which were developed from experimental, statistical and analytical methods in order to provide estimates of shrinkage for various process conditions. On the basis of theoretical analysis, additional transfer functions have been developed to predict shrinkage for different sets of materials, process conditions, and mold geometry. A turnkey finite element analysis system utilizing commercial software is being developed and validated for commercial applications for shrinkage prediction.

Transfer Function Development for the Injection Molding of Optical Media
David Hatch, David Kazmer, Matt Niemeyer, May 1999

The competitive nature of optical molding requires constant productivity improvements. In order to stay competitive, improvement in productivity through reduction in process cycle time and improved yield is required. Understanding how each input material and process parameter affects each quality output is the key to productivity and yield gains. This paper develops detailed and fundamental quantitative transfer functions that require only material and machine properties to provide specific processing conditions for optimal productivity and media quality.

Mixing Analysis of a Reactive Extrusion Process in a Co-Rotating Twin-Screw Extruder Screw Element Channel
D. Strutt, C. Tzoganakis, T.A. Duever, May 1999

Simulations of steady-state non-isothermal non-Newtonian reactive flow of molten polypropylene in a channel of a forward conveying screw element from a self-wiping co-rotating twin-screw extruder, performed using the commercial finite element simulation package FIDAP, are described. The reaction is peroxide-initiated controlled degradation of polypropylene. In the simulations, the screw speed, entering peroxide distribution, and pressure-to-drag flow ratio in the channel are all varied, and a mixing analysis of the flows is performed based on computed values of the flow efficiency parameter.

Utilization of the Derivatives of Fullerene (C60) Modified Phenolic Resin to Prepare Carbon/Carbon Composites (I)
Chen-Chi M. Ma, Shang-Chin Sung, Wen-Jia Wu, May 1999

The improvement on the toughness of the cured phenolic resin modified with linear PU and star C60-PU was investigated. The modified phenolic resins were utilized to prepare carbon/carbon composites. Impact strength of cured resin specimen contains 3phr linear PU is 27 % higher than that of neat phenolic resin while the impact strength of specimen contains 3phr C60-PU is 57 % higher than that of neat phenolic resin. The flexural strength of carbon/carbon composite contains 3phr linear PU is 25 % lower than that of composite contains only neat phenolic resin. The flexural strength of carbon/carbon composite contains 3phr C60-PU is 40% higher than that of composite contains only neat phenolic resin.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net