SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Fabrication and Characterization of Structure Membranes for Proton Transport
Jeffrey V. Gasa, Montgomery T. Shaw, May 2004

Polymer blend technology was used to create highly anisotropic membranes for fuel cell applications. An important factor for creating structures of high proton conductivity and low methanol permeability was the application of electric fields of selected magnitude and frequency during the formation of the membrane.

Thermal and Electrical Analysis of Vapor Grown Carbon Nanofiber/Polyoxymethylene (VGCNF/POM) Composites
Shuying Yang, Karen Lozano, Robert Jones, Laura Espinoza, Azalia Lomeli, May 2004

Vapor grown carbon nanofiber (VGCNF) reinforced polyoxymethylene (POM) composites were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The electrical resistivity was also analyzed. The thermal stability of the composites was affected by VGCNFs. A drop of 14 orders of magnitude of volume resistivity was obtained by inclusion of 5 wt% VGCNFs. VGCNFs were shown to act as defects, the crystallinity was lowered and the crystallization was delayed.

Smart Adhesion: Controlling Polymer Interfaces through Patterning
Alfred J. Crosby, May 2004

To understand the role of patterned geometries/topographies in controlling polymer adhesion and release, we fabricate controlled structures ranging from the nanometer to micron length scales on polymer surfaces. Our initial results focus on the effect of patterned arrays of micron-scale posts and holes on the adhesion of polydimethylsiloxane layers. To facilitate the exploration of the large, possibly non-continuous parameter space presented by this problem, we rely upon combinatorial methodologies to effectively screen multiparameter maps.

Micro-Thermomechanical Properties of Composite Polymer Surfaces as Probed by Scanning Probe Microscopy
Vladimir V. Tsukruk, May 2004

We present an overview of the microprobing approaches based on scanning probe techniques to study surface micro- and nano- thermomechanical properties. We focus on polymer composites and nanocomposites, ultrathin polymer coatings, and polymer multiphase molecules. We briefly review state-of-the art developments in the field of contact surface nanoprobing, scanning thermal microscopy analysis.

Confocal Raman Imaging of Heterogeneous Polymeric Materials
Chris A. Michaels, Donna B. Klinedinst, D. Bruce Chase, May 2004

Confocal Raman microscopy is a powerful tool for the characterization of spatial variations in material properties including chemical composition and crystallinity. The design of a custom Raman microscope will be described, as will applications of this technique to the characterization of the chemical microstructure and morphology of heterogeneous polymeric materials.

Near Field Infrared Microscopy of Polymer Surfaces
Larissa Stebounova, Slava Romanov, Boris Akhremitchev, Gilbert Walker, May 2004

We report recent results of the near field microscopy of polymers. Spatial resolution of chemical content at 100th the wavelength of light has been used to compare compositional imaging using infrared near field microscopy with the more commonly used method of AFM phase imaging.

Thermomechanical Probing of Molecular Mobilities in Nanoconfined and Structurally Constrained Polymeric Systems
René M. Overney, Tomoko Gray, Joseph Wei, Scott Sills, May 2004

The molecular mobility in nanoconfined and structurally constrained polymeric systems is a vital parameter in the advancement of future technological applications. We employed two scanning force microscopy methods, with which thermally activated structural transitions and molecular relaxation processes of ultrathin polymer films were examined. The potentials of these methods are illustrated involving polyelectrolyte membranes, dendronized nonlinear optical polymers and thin glassy homopolymer films.

Development of a Gelation Model for Methyl Cellulose Hydrogels
Sunil C. Joshi, Y.C. Lam, Li Lin, May 2004

The development of a gelation model for methylcellulose (MC) hydrogels is presented. The heat of gelation for aqueous solutions of different concentrations of MC SM4000 was measured using micro-DSC. Different mathematical formulations for modeling the experimental data were considered. The necessary constants were obtained empirically. Further analysis was performed to predict the total heat, the degree, and the rate of gelation. The effect of MC concentration on these parameters was investigated and discussed.

Fiber Reinforced Extruded Starch Foams
Gregory M. Glenn, Syed H. Imam, William J. Orts, Artur K. Klamczynski, May 2004

Cereal or tuber starches have been utilized in making low-density foam using a baking process. Foams made only of starch tend to embrittle and have poor mechanical properties. Fiber reinforced foams were made that had flexural properties similar to foam materials used in commercial food containers. Pulped fiber from wheat and rice straw was as effective as pulped hard and softwood fiber in improving foam properties.

Characterization of Structure and Viscoelastic Properties of Polypropylene Nanopolymer
Kamal K. Kar, Pradip Paik, Joshua U. Otaigbe, May 2004

High quality polypropylene nanopolymer has been synthesized over a range temperature and shear rate for the first time. Scanning electron microscopy, particle size analyzer and BET analysis reveals that it is spherical in nature and could be produced within a range of 0.17 to 45 ?m in diameter and minimum surface area of 16.2 m2/gm. Infrared spectroscopy, X-ray diffraction, dynamic mechanical analyzer and thermogravimetric analyzer are also used to characterize its structure, viscoelastic properties and thermal stability.

Optimum Content of Clay for Microcellular LDPE/Clay Nanocomposite Foams Blown with CO2
K.H. Wang, Y.H. Lee, C.B. Park, May 2004

This research investigates the optimum content of clay required to achieve microcellular LDPE/clay nanocomposite foams blown with CO2. The effects of clay content and clay dispersion on cell morphology are thoroughly investigated. Less than 0.1 wt% of clay addition produces a microcellular structure with a cell density of over 109 cells/cm3 and a cell size of about 5 ?m.

Methods of Expanding Polystyrene to Ultra Low-Density Foam
Chung P. Park, May 2004

Ultra low-density expanded polystyrene is obtained by an optimum formulation or by extended exposure to atmospheric steam. A polystyrene resin is rheologically modified to have both ease of flow and resistance against collapse. The collapse resistance is imparted either by light crosslinking of the resin with a silane compound or by adding a small amount of polyphenylene ether. Extended exposure to steam permits continuous extension of cell walls by reducing orientation. An expanded polystyrene loose fill material having an expansion ratio exceeding 200 has been achieved.

Torsion Properties of Cylindrical Polymer Foams
Denis Rodrigue, Yan Pelletier, Ryan Gosselin, May 2004

Solid state viscoelastic shear moduli (G' and G) of cylindrical polymer foams were measured as a function of frequency. Extruded samples were produced via a cylindrical die to obtain foams of various morphologies. To perform the shear measurements a modification of the torsion rectangular setup on an ARES rheometer was made. The setup calibration and test conditions are presented. The data are discussed and compared to simple models taken from the literature."

Prediction of Density Variation in Thick Microcellular Sheets
Krishna Nadella, Farhad Mehta, Vipin Kumar, Wei Li, May 2004

Earlier a process to produce thick flat microcellular sheets, in the 3 - 15 mm range for a number of thermoplastics such as PMMA, PS, ABS and PC was reported. In this paper a model to predict the density variation across the thickness of microcellular sheet is presented. This model builds on both the steady-state mass balance model and the skin thickness model for the solid-state microcellular process. The model is applied to predict density variation and mean density in a 1.5 mm thick microcellular PC and preliminary results are presented.

Effects of Nano-Particles on Density Reduction and Cell Morphology of Extruded mPE/Wood-Fiber/Nano Composites
G. Guo, K.H. Wang, C.B. Park, Y.S. Kim, G. Li, May 2004

This paper investigates the effects of nano-particles on cell morphology and foam expansion in the extrusion foaming of mPE/wood-fiber/nano-composites with a chemical blowing agent. The results indicate that the addition of clay generally decreases cell size, increases cell density and facilitates foam expansion. Furthermore, the foam material with added clay shows good char formation when it is burned.

Increase of Open-Cell Content by Plasticizing the Soft Regions with a Secondary Blowing Agent
Patrick C. Lee, Hani E. Naguib, Chul B. Park, Jin Wang, May 2004

This paper describes the effects of n-butane mixed with primary CO2 as a secondary blowing agent on cellpopulation densities, volume expansion ratios, and open-cell contents of low-density polyethylene (LDPE) and LDPE/polystyrene (PS) blends in extrusion. With the plasticizing effect of n-butane, a high open-cell content (up to 100%) over a wide range of processing temperatures was successfully achieved.

Solid-State Polyimide Foaming from Powder Precursors: Effect of Particle Morphology on the Diffusive Phenomena
Camilo I. Cano, R. Byron Pipes, May 2004

Solid-state foaming of polyimide powder precursors is studied by examining concurrent and competitive phenomena that determine the morphology and physical properties of the foam unit cell. Effects of particle size and shape on bubble nucleation and growth will be addressed.

Porous Polystyrene Foam Produced at Supercritical Conditions
Chang-Ming Wong, Wen-Chung Liang, Chih-Hung Ying, Ming-Lang Hung, May 2004

This work examines four polystyrene (PS) resins and PS resins with fillers. The materials .are processed into sheets and then the sheets are foamed at various supercritical conditions. The morphology of foam is studied and a large porous PS foam is also developed for a vacuum insulation panel.

Effects of CO2 Content on the Expansion Behaviors of PS Foams
Xiang Xu, Donglai Xu, Chul B. Park, May 2004

This paper discusses the effects of the blowing-agent content on the expansion behaviours of PS foams blown with CO2. Three groups of interchangeable filamentary dies were used to investigate the effect of the die geometry on the expansion ratio. A high CO2 content would be favourable to increase the expansion ratio. But the high CO2 content increased the solubility pressure and the amount of premature cell growth. When the amount of premature cell-growth exceeded a critical value, the expansion ratios were dramatically decreased, even at the optimum temperature.

Entrained Gas Process for Injection Molding
Jingyi Xu, May 2004

Entrained gas for injection molding, such as structural foam, microcellular foam, gas assist processing, has some common technical issues and safety concerns which are important to be fully understood for a safety system, and acceptable processing conditions. Several major issues are addressed and analyzed for machine and mold design, part design and handling.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net